پردازش سیگنالهای حیاتی
محمد داود خلیلی؛ وحید ابوطالبی؛ حمید سعیدی سورک
دوره 16، شماره 1 ، اردیبهشت 1401، ، صفحه 31-40
چکیده
مغز انسان جزو شبکههای پیچیده و ناهمگن محسوب میشود و سیگنالهای مغز حاوی اطلاعات زیادی هستند، از این رو محققان این حوزه همواره درصدد یافتن راهحلهایی مناسب برای انتخاب ویژگیهای معنادار و کاهش بعد مناسب این اطلاعات هستند تا به طبقهبندی بهتر منجر گردد. دو مورد از ابزارهای نوین برای پردازش سیگنالهای مغزی، پردازش سیگنال روی ...
بیشتر
مغز انسان جزو شبکههای پیچیده و ناهمگن محسوب میشود و سیگنالهای مغز حاوی اطلاعات زیادی هستند، از این رو محققان این حوزه همواره درصدد یافتن راهحلهایی مناسب برای انتخاب ویژگیهای معنادار و کاهش بعد مناسب این اطلاعات هستند تا به طبقهبندی بهتر منجر گردد. دو مورد از ابزارهای نوین برای پردازش سیگنالهای مغزی، پردازش سیگنال روی گراف (GSP) و روشهای فراابتکاری و تکاملی هستند. در روش پیشنهادی این مقاله، دو ساختار هندسی و ترکیبی برای گراف مغز در نظر گرفته شده که در ساختار ترکیبی، وزن یالها، ترکیب وزندار دو معیار فاصلهی هندسی و همبستگی است. به منظور کاهش بعد گرافی، از معیار درجهی وزندار و ترکیب روش کاهش کرون با تبدیل فوریه روی گراف (KG) استفاده شده تا به نحو مناسبی اطلاعات تمام رئوس گراف در رئوس منتخب حفظ گردد. استخراج ویژگی توسط تخمین لدویت-وولف و روش نگاشت فضای مماسی انجام شده و برای کاهش بعد ویژگیهای مستخرج، از روش تحلیل مؤلفههای اصلی (PCA) و انتخاب ویژگی بر اساس تکامل تفاضلی (DE) استفاده شده است. ویژگیهای منتخب به چندین طبقهبندیکنندهی معروف حوزهی یادگیری ماشین داده شدهاند. برای ارزیابی عملکرد روش پیشنهادی، از دادگان IV-a مسابقات III-BCI بهرهگیری شده است. نتایج نشان میدهد که میانگین صحت طبقهبندی روش پیشنهادی KG-PCA با طبقهبندهای ماشین بردار پشتیبان با تابع پایه شعاعی (SVM-RBF) و درخت تصمیم (DT)، در گراف ساختاری و گراف ساختاری-عملکردی، نسبت به روش G-PCA در مطالعات پیشین، بالاتر بوده و طبقهبند DT به میانگین درصد صحت 17/1 15 ±/91 دستیافته است. همچنین طبق نتایج به دستآمده، عملکرد روش پیشنهادی KG-DE در مقایسه با KG-PCA نیز بهتر بوده و در بهترین حالت، متوسط درصد صحت طبقهبند SVM-RBF برابر با 27/1 50 ±/95 بهدست آمده است.
پردازش سیگنالهای حیاتی
مریم توکلی نجف آبادی؛ وحید ابوطالبی؛ فرزانه شایق بروجنی
دوره 10، شماره 1 ، اردیبهشت 1395، ، صفحه 1-10
چکیده
هدف این مقاله، ارزیابی روش ترکیبی آنالیز همبستگی کانونی- فیلتر تطبیقی حداقل مربعات بازگشتی (CCA-RLS) در حذف آرتیفکت چشمی (EOG) از سیگنال مغزی (EEG) و مقایسة آن با روشهای آنالیز مؤلفههای مستقل (ICA)، آنالیز همبستگی کانونی(CCA)، فیلتر تطبیقی حداقل مربعات بازگشتی (RLS) و روش ترکیبی ICA-RLS است. برای این منظور، بعد از تجزیة سیگنال نویزی توسط CCA، مؤلفة ...
بیشتر
هدف این مقاله، ارزیابی روش ترکیبی آنالیز همبستگی کانونی- فیلتر تطبیقی حداقل مربعات بازگشتی (CCA-RLS) در حذف آرتیفکت چشمی (EOG) از سیگنال مغزی (EEG) و مقایسة آن با روشهای آنالیز مؤلفههای مستقل (ICA)، آنالیز همبستگی کانونی(CCA)، فیلتر تطبیقی حداقل مربعات بازگشتی (RLS) و روش ترکیبی ICA-RLS است. برای این منظور، بعد از تجزیة سیگنال نویزی توسط CCA، مؤلفة شامل آرتیفکت EOG با محاسبة مقدار کرتوزیس شناسایی شده و با استفاده از فیلتر RLS، فیلتر شد؛ سپس با ترکیب مؤلفهها، سیگنال حذف نویزشده بازسازی شد. برای مقایسة کمّی روشها از دو معیار ارزیابی میانگین مجذور مربعات خطا (MSE) و نسبت سیگنال به نویز (SNR) برای دادههای شبیهسازی شده استفادهشده است. متوسط مقادیر MSE وSNR برای 5 نفر در 4 کانال مختلف محاسبه شد. دادههای استفادهشده از مجموعه دادههای مسابقات BCI2008 انتخاب شدند. با توجه به نتایج بهدست آمده، روش ترکیبی پیشنهادی CCA-RLS ، عملکرد بهتری نسبت به سایر روشهای استفادهشده در این مقاله دارد.
پردازش سیگنالهای حیاتی
فرشته سلیمیان ریزی؛ وحید ابوطالبی؛ محمدتقی صادقی
دوره 9، شماره 4 ، بهمن 1394، ، صفحه 387-397
چکیده
آشکارسازی پتانسیلهای وابسته به رخداد، یک پیشنیاز مهم در سیستمهای واسط مغز و کامپیوتر (BCI) مبتنی بر ERP است. برای افزایش درصد صحت طبقهبندی در این سیستمها، از روشهای فیلترینگ مختلفی استفاده میشود تا نرخ سیگنال به نویز بهبود یابد و در نتیجه تشخیص و طبقهبندی پتانسیلهای وابسته به رخداد آسان شود. پیش از این، عملکرد فیلترهای ...
بیشتر
آشکارسازی پتانسیلهای وابسته به رخداد، یک پیشنیاز مهم در سیستمهای واسط مغز و کامپیوتر (BCI) مبتنی بر ERP است. برای افزایش درصد صحت طبقهبندی در این سیستمها، از روشهای فیلترینگ مختلفی استفاده میشود تا نرخ سیگنال به نویز بهبود یابد و در نتیجه تشخیص و طبقهبندی پتانسیلهای وابسته به رخداد آسان شود. پیش از این، عملکرد فیلترهای الگوی مکانی مشترک (CSP) و الگوی زمانی مشترک (CTP) که بهترتیب فیلترهای مکانی و زمانی هستند، در آشکارسازی مولفة P300 بررسی شده است. در این روشها، فیلترها به صورتی آموزش داده میشوند که واریانس یک کلاس، بیشینه شده و واریانس کلاس دیگر بهطور همزمان کمینه شود. نتایج نشان داده است که در سیستم P300Speller، عملکرد فیلترهای زمانی CTP بهتر از فیلترهای مکانی CSP است. در این مطالعه برای بهبود عملکرد روش CTP، الگوریتم ترکیبی الگوی زمانی مشترک وزندار (WCTP) پیشنهاد شده است. در این روش به هر دسته ویژگی، وزنی متناسب با اهمیت مقادیر ویژه مربوطه داده میشود. در واقع در این روش، ویژگیهای تولیدی توسط فیلترهای ابتدایی و انتهایی CTP وزن بیشتری در تصمیمگیری دارند. در روش ترکیبی بهکار رفته در این الگوریتم، از طبقهبندی کنندههای LDA استفاده شده است. با توجه به آزمایشهای انجام شده روی دو نمونة مورد بررسی و با 5 ثبت میانگینگیری شده، دسته ویژگی بهدست آمده توسط WCTP با میانگین درصد صحت طبقهبندی 2/90 بهترین عملکرد را از خود نشان داد که نشانگر بهبود تقریباً 4 درصدی نسبت به CTP است.
پردازش سیگنالهای حیاتی
محمدعلی منوچهری؛ وحید ابوطالبی؛ امین مهنام
دوره 9، شماره 2 ، مرداد 1394، ، صفحه 205-214
چکیده
سیستمهای BCI مبتنیبر SSVEP بهدلیل مزایایی چون سرعت انتقال اطلاعات بالا، نسبت بالای سیگنال به نویز و راحتی کاربران در استفاده از آنها، توجه بسیاری از محققان را به خود جلب کردهاند. هدف پردازشی در این سیستمها، شناسایی فرکانس ظاهرشده در سیگنال EEG کاربر است. از میان روشهای پردازشی مختلفی که برای شناسایی فرکانس در سیستمهای ...
بیشتر
سیستمهای BCI مبتنیبر SSVEP بهدلیل مزایایی چون سرعت انتقال اطلاعات بالا، نسبت بالای سیگنال به نویز و راحتی کاربران در استفاده از آنها، توجه بسیاری از محققان را به خود جلب کردهاند. هدف پردازشی در این سیستمها، شناسایی فرکانس ظاهرشده در سیگنال EEG کاربر است. از میان روشهای پردازشی مختلفی که برای شناسایی فرکانس در سیستمهای BCI مبتنیبر SSVEP استفاده میشوند، روش LASSO با استقبال فراوانی همراه بودهاست. باوجود عملکرد قابلقبول روش LASSO در سیستمهای BCI مبتنیبر SSVEP، این روش در هنگام ساخت سیگنال مرجع، اختلاف فاز احتمالی بین سیگنال مرجع و سیگنال EEG ثبتشده را درنظر نمیگیرد. در این مقاله، ایدة اصلاح فاز سیگنال مرجع با توجه به سیگنال EEG ثبتشده بررسی شده و روش پیشنهادی با عنوان LASSO با فاز تصحیحشده مطرحشده است. در این مطالعه، ابتدا کانال مناسب برای شناسایی فرکانس در سیستمهای BCI مبتنیبر SSVEP انتخاب شد و در ادامه، مقایسهای بین روش LASSO استاندارد و روش پیشنهادی LASSO با فاز تصحیحشده انجام شد. نتایج این مقاله نشان میدهد که اصلاح فاز سیگنال مرجع در روش پیشنهادی LASSO با فاز تصحیحشده، به بهبود نتایج شناسایی فرکانس نسبت به روش LASSO استاندارد منجر میشود.
پردازش سیگنالهای حیاتی
علیرضا میرجلیلی؛ وحید ابوطالبی؛ محمدتقی صادقی
دوره 8، شماره 4 ، دی 1393، ، صفحه 305-323
چکیده
در سالهای اخیر، واسط مغز/رایانه (BCI)، به عنوان وسیلهای جدید برای ارتباط بین مغز انسان و محیط اطرافش مورد توجه قرار گرفتهاست. راهاندازی این نوع سیستمها به همکاری چند بلوک ازجمله بلوکهای ثبت، پردازش سیگنال و رابط کاربری نیاز دارد. بلوک پردازش سیگنال شامل بلوکهای پیشپردازش و شناسایی الگو است. بلوک شناسایی الگو نیز از ...
بیشتر
در سالهای اخیر، واسط مغز/رایانه (BCI)، به عنوان وسیلهای جدید برای ارتباط بین مغز انسان و محیط اطرافش مورد توجه قرار گرفتهاست. راهاندازی این نوع سیستمها به همکاری چند بلوک ازجمله بلوکهای ثبت، پردازش سیگنال و رابط کاربری نیاز دارد. بلوک پردازش سیگنال شامل بلوکهای پیشپردازش و شناسایی الگو است. بلوک شناسایی الگو نیز از دو مرحلهی استخراج ویژگی و طبقهبندی تشکیل شدهاست. در این پژوهش، از طبقهبندی کننده براساس نمایش تنک (SRC) در بلوک طبقهبندی استفاده شد. طبقهبندی کننده براساس نمایش تنک، دو مرحلهی اساسی تشکیل ماتریس دیکشنری و یافتن پاسخ تنک دادهی ورودی دارد. برای تشکیل ماتریس دیکشنری که از مرحله استخراج ویژگی به دست میآید، از الگوریتم الگوهای مکانی مشترک (CSP) استفاده شد. از معایب این الگوریتم، حساسیت به نویز و مسألهی فرایادگیری است. برای رفع معایب CSP، از الگوریتمهای الگوهای مکانی مشترک تنظیم شده (RCSP) استفاده شد. در مطالعات قبلی در زمینهی BCI، برای یافتن پاسخ تنک از الگوریتم استاندارد BP استفاده شده که از معایب آن، پیچیدگی محاسباتی و زمانبر بودن آن است. برای رفع معایب این روش، با توجه به کارایی مناسب روش جدید SL0 در تعدادی از تحقیقات مشابه، از این الگوریتم برای محاسبه پاسخ تنک استفاده شد. نتایج حاصل نشان میدهد که الگوریتمهای RCSP در مواردی که دادههای آموزشی کمی موجود است میتواند معایب CSP را به خوبی برطرف کند. به طور میانگین استفادهاز این روش 53/7% بهبود را نسبت به CSP نشان داد. همچنین الگوریتم SL0، علیرغم کاهش قابل ملاحظه زمان پردازش در مقایسه با BP، در صحت تشخیص معادل با آن عمل کردهاست.
پردازش تصاویر پزشکی
ملیحه میری؛ محمدتقی صادقی؛ وحید ابوطالبی
دوره 8، شماره 1 ، فروردین 1393، ، صفحه 45-56
چکیده
ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻧﺘﺎﻳﺞ ﻣﻮﻓﻘﻴﺖﺁﻣﻴﺰ ﻃﺒﻘﻪﺑﻨﺪیﻛﻨﻨﺪﻩ ﻣﺒﺘﻨﻰ ﺑﺮ ﻧﻤﺎﻳﺶ ﺗﻨﮏ (SRC) ﻭ ﺧﻮﺷﻪﺑﻨﺪی ﺯﻳﺮﻓﻀﺎی ﺗﻨﮏ (SSC) ﺩﺭ ﻛﺎﺭﺑﺮﺩﻫﺎی ﻣﺨﺘﻠﻒ، ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ﺑﺎ ﺗﺮﻛﻴﺐ ﺍﻳﻦ ﺩﻭ ﺭﻭﺵ، ﻳﮏ ﺭﻭﺵ ﻃﺒﻘﻪﺑﻨﺪی ﺳﻠﺴﻠﻪ ﻣﺮﺍﺗﺒﻰ ﺍﺭﺍﺋﻪ ﻣﻰﺷﻮﺩ. ﺍﻳﺪﻩ ﺍﺻﻠﻰ ﺩﺭ ﺭﻭﺵﻫﺎی ﻃﺒﻘﻪﺑﻨﺪی ﻭ ﺧﻮﺷﻪﺑﻨﺪی ﻣﺒﺘﻨﻰ ﺑﺮ ...
بیشتر
ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻧﺘﺎﻳﺞ ﻣﻮﻓﻘﻴﺖﺁﻣﻴﺰ ﻃﺒﻘﻪﺑﻨﺪیﻛﻨﻨﺪﻩ ﻣﺒﺘﻨﻰ ﺑﺮ ﻧﻤﺎﻳﺶ ﺗﻨﮏ (SRC) ﻭ ﺧﻮﺷﻪﺑﻨﺪی ﺯﻳﺮﻓﻀﺎی ﺗﻨﮏ (SSC) ﺩﺭ ﻛﺎﺭﺑﺮﺩﻫﺎی ﻣﺨﺘﻠﻒ، ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ﺑﺎ ﺗﺮﻛﻴﺐ ﺍﻳﻦ ﺩﻭ ﺭﻭﺵ، ﻳﮏ ﺭﻭﺵ ﻃﺒﻘﻪﺑﻨﺪی ﺳﻠﺴﻠﻪ ﻣﺮﺍﺗﺒﻰ ﺍﺭﺍﺋﻪ ﻣﻰﺷﻮﺩ. ﺍﻳﺪﻩ ﺍﺻﻠﻰ ﺩﺭ ﺭﻭﺵﻫﺎی ﻃﺒﻘﻪﺑﻨﺪی ﻭ ﺧﻮﺷﻪﺑﻨﺪی ﻣﺒﺘﻨﻰ ﺑﺮ ﻧﻤﺎﻳﺶ ﺗﻨﮏ، ﻧﻤﺎﻳﺶ ﻫﺮ ﺩﺍﺩﻩ ﺑﻪ ﺻﻮﺭﺕ ﺗﺮﻛﻴﺐ ﺧﻄﻰ ﺗﻨﮏ ﺍﺯ ﺳﺎﻳﺮ ﺩﺍﺩﻩﻫﺎ ﺍﺳﺖ ﺑﻪ ﮔﻮﻧﻪﺍی ﻛﻪ ﺩﺍﺩﻩﻫﺎی ﻣﺸﺎﺑﻪ ﺑﺎ ﺩﺍﺩﻩ ﻣﻮﺭﺩ ﻧﻈﺮ ﺩﺭ ﺍﻳﻦ ﺗﺮﻛﻴﺐ ﺧﻄﻰ ﺑﻴﺸﺘﺮﻳﻦ ﻭﺯﻥ ﺭﺍ ﺑﻪ ﺧﻮﺩ ﺍﺧﺘﺼﺎﺹ ﺩﻫﻨﺪ. ﺩﺭ ﺭﻭﺵ ﭘﻴﺸﻨﻬﺎﺩی، ﺑﻪ ﻣﻨﻈﻮﺭ ﺩﺳﺖﻳﺎﺑﻰ ﺑﻪ ﺻﺤﺖ ﻃﺒﻘﻪﺑﻨﺪی ﺑﻴﺸﺘﺮ، ﺍﺑﺘﺪﺍ ﺩﺍﺩﻩﻫﺎی ﺁﻣﻮﺯﺷﻰ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺭﻭﺵ ﺧﻮﺷﻪﺑﻨﺪی ﺯﻳﺮﻓﻀﺎی ﺗﻨﮏ ﺑﺨﺶﺑﻨﺪی ﻣﻰﺷﻮﻧﺪ. ﺳﭙﺲ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺷﻴﻮﮤ ﺑﻜﺎﺭ ﮔﺮﻓﺘﻪ ﺷﺪﻩ ﺩﺭ ﻃﺒﻘﻪﺑﻨﺪیﻛﻨﻨﺪﻩ ﻣﺒﺘﻨﻰ ﺑﺮ ﻧﻤﺎﻳﺶ ﺗﻨﮏ، ﻃﺒﻘﻪﺑﻨﺪیﻛﻨﻨﺪﻩﺍی ﺩﻭ ﻣﺮﺣﻠﻪﺍی ﻃﺮﺍﺣﻰ ﻣﻰﺷﻮﺩ. ﺩﺭ ﻣﺮﺣﻠﺔ ﺍﻭﻝ، ﺧﻮﺷﻪﺍی ﻛﻪ ﺩﺍﺩﻩ ﻭﺭﻭﺩی ﺑﻴﺸﺘﺮﻳﻦ ﺷﺒﺎﻫﺖ ﺭﺍ ﺑﺎ ﺁﻥ ﺩﺍﺭﺩ ﺗﻌﻴﻴﻦ ﺷﺪﻩ ﻭ ﺩﺭ ﻣﺮﺣﻠﻪ ﺑﻌﺪ ﻃﺒﻘﺔ ﻣﺮﺑﻮﻃﻪ ﺑﺮﭼﺴﺐ ﺩﺍﺩﻩ) ﺗﻌﻴﻴﻦ ﻣﻰﺷﻮﺩ. ﺑﺮﺍی ﺍﺭﺯﻳﺎﺑﻰ ﺭﻭﺵ ﭘﻴﺸﻨﻬﺎﺩی ﺍﺯ ﺩﺍﺩﮔﺎﻥ ﺭﻳﺰﺁﺭﺍﻳﻪ Tumors-14 -ﻛﻪ ﺣﺎﻭی ﺍﻃﻼﻋﺎﺕ ﻣﺮﺑﻮﻁ ﺑﻪ ﻧﻮﻉ ﺳﺮﻃﺎﻥ ﻣﺨﺘﻠﻒ ﺍﺳﺖ- ﺍﺳﺘﻔﺎﺩﻩ ﺷﺪﻩ ﺍﺳﺖ. ﺍﺯ ﺟﻤﻠﻪ ﻭﻳﮋﮔﻰﻫﺎی ﺍﻳﻦ ﺩﺍﺩﮔﺎﻥ ﺗﻌﺪﺍﺩ ﺯﻳﺎﺩ ﺑﻌﺪ ﺩﺭ ﻣﻘﺎﺑﻞ ﺗﻌﺪﺍﺩ ﻛﻢ ﻧﻤﻮﻧﻪ ﺩﺭ ﺍﺳﺖ ﻛﻪ ﻋﻤﻞ ﻃﺒﻘﻪﺑﻨﺪی ﺁﻥﻫﺎ ﺭﺍ ﺑﻪ ﻣﺴﺄﻟﻪﺍی ﭼﺎﻟﺶﺑﺮﺍﻧﮕﻴﺰ ﺗﺒﺪﻳﻞ ﻣﻰﻛﻨﺪ. ﺍﺑﻌﺎﺩ ﺯﻳﺎﺩ ﺩﺍﺩﻩﻫﺎ ﻧﻪ ﺗﻨﻬﺎ ﻣﺸﻜﻼﺗﻰ ﺍﺯ ﺟﻤﻠﻪ ﻧﻔﺮﻳﻦ ﺍﺑﻌﺎﺩ ﻭ ﺑﻴﺶ ﺍﻧﻄﺒﺎﻕ ﻃﺒﻘﻪﺑﻨﺪیﻛﻨﻨﺪﻩ ﺑﻪ ﺩﺍﺩﻩﻫﺎی ﺁﻣﻮﺯﺷﻰ ﺭﺍ ﺑﻪ ﺩﻧﺒﺎﻝ ﺩﺍﺭﺩ، ﺑﻠﻜﻪ ﺑﺎﻋﺚ ﺍﻓﺰﺍﻳﺶ ﭘﻴﭽﻴﺪﮔﻰ ﻣﺤﺎﺳﺒﺎﺗﻰ ﺷﺪﻩ؛ ﺯﻣﺎﻥ ﻻﺯﻡ ﺭﺍ ﺑﺮﺍی ﺍﺟﺮﺍی ﺍﻟﮕﻮﺭﻳﺘﻢﻫﺎ ﺍﻓﺰﺍﻳﺶ ﻣﻰﺩﻫﺪ. ﺁﺯﻣﺎﻳﺶﻫﺎی ﺍﻧﺠﺎﻡ ﺷﺪﻩ ﺑﺮ ﺍﻳﻦ ﺩﺍﺩﮔﺎﻥ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺭﻭﺵ ﭘﻴﺸﻨﻬﺎﺩی ﻧﺸﺎﻥ ﻣﻰﺩﻫﺪ ﻛﻪ ﺩﺭ ﻣﻘﺎﻳﺴﻪ ﺑﺎ ﺳﺎﻳﺮ ﺭﻭﺵﻫﺎی ﻃﺒﻘﻪﺑﻨﺪی، ﺍﻳﻦ ﺭﻭﺵ ﺑﻪ ﻧﺘﺎﻳﺞ ﺑﻬﺘﺮی ﻣﻨﺠﺮ ﻣﻰﺷﻮﺩ.
پردازش سیگنالهای حیاتی
محمد شهاب شهوازیان؛ وحید ابوطالبی؛ محمدتقی صادقی
دوره 6، شماره 1 ، خرداد 1391، ، صفحه 35-47
چکیده
با ظهور دانش بیومتریک، روشهای متداول تأیید هویت در سیستمهای بیومتریک دچار دگرگونی شدهاند و در حال جایگزینی با روشهایی بر پایة علایم حیاتی هستند. اخیراً کاربرد سیگنال الکتریکی مغز(EEG) در سیستمهای بیومتریک به عنوان یک شاخه پژوهشی جذاب و کاربردی مورد توجه محققان قرار گرفته است. پژوهشهای نسبتاً محدودی در زمینة بیومتریک سیگنال ...
بیشتر
با ظهور دانش بیومتریک، روشهای متداول تأیید هویت در سیستمهای بیومتریک دچار دگرگونی شدهاند و در حال جایگزینی با روشهایی بر پایة علایم حیاتی هستند. اخیراً کاربرد سیگنال الکتریکی مغز(EEG) در سیستمهای بیومتریک به عنوان یک شاخه پژوهشی جذاب و کاربردی مورد توجه محققان قرار گرفته است. پژوهشهای نسبتاً محدودی در زمینة بیومتریک سیگنال الکتریکی مغز بهخصوص در سیستمهای تأیید هویت آن انجام شده است و اکثر تحقیقات بر سیستمهای تعیین هویت EEGتمرکز داشتهاند. در این مقاله کارایی سیگنال الکتریکی مغز به عنوان یک سیستم بیومتریک در تأیید هویت افراد نشان داده شده است.در سیستم بیومتریک معرفی شده، از سیگنال الکتریکی پانزده کاربر در حین انجام فعالیت ذهنی استفاده شده است. ترکیبی از ضرایب مدل خود بازگشتی(AR)، توان باندهای فرکانسی سیگنال مغز، چگالی طیف توان، آنتروپی انرژی و آنتروپی نمونه بهعنوان ویژگیهای مستخرج از سیگنال مغز و روش Kنزدیکترین همسایه بهعنوان طبقهبند، استفاده شده است. بهمنظور بهبود عملکرد سیستم تأیید هویت، علاوه بر بررسی ادغام در سطح حسگر و فضای ویژگی، امکان بهکارگیری روش انتخاب ویژگی رفت و برگشتی نیز مطالعه شده است. نتایج آزمایشهای ما بر روی پایگاه داده Shalkو همکارانش بیانگر این موضوع است که با ترکیب ویژگیهای متفاوت و با بهکارگیری سیگنال مغزی تککاناله، عملکرد سیستم در دو روش تکبلوک و چندبلوک در مقایسه با سایر سیستمهای تأیید هویت مبتنی بر سیگنال الکتریکی مغز به نحو چشمگیری بهبود مییابد و چشم انداز روشنی را از استفادة عملی و تجاری سیگنال الکتریکی مغز در سیستمهای تأیید هویت آینده نشان میدهد.
زهرا امینی؛ وحید ابوطالبی؛ محمدتقی صادقی
دوره 4، شماره 4 ، اسفند 1389، ، صفحه 293-306
چکیده
دراین مقاله سیستمی مبتنی بر بازشناسی آماری الگو جهت تفکیک سیگنالهای حاوی P300 و فاقد آن، ارائه میشود. این سیستم- که بر روی دادگان P300-Speller مسابقات BCI 2005 کار میکند- از چهار بخش اصلی پیشپردازش، استخراج ویژگی، انتخاب ویژگی و طبقهبند تشکیل شده که تأکید اصلی این مقاله بر بخش استخراج ویژگی و بررسی کارایی ویژگیهای مختلف است. در مرحلة ...
بیشتر
دراین مقاله سیستمی مبتنی بر بازشناسی آماری الگو جهت تفکیک سیگنالهای حاوی P300 و فاقد آن، ارائه میشود. این سیستم- که بر روی دادگان P300-Speller مسابقات BCI 2005 کار میکند- از چهار بخش اصلی پیشپردازش، استخراج ویژگی، انتخاب ویژگی و طبقهبند تشکیل شده که تأکید اصلی این مقاله بر بخش استخراج ویژگی و بررسی کارایی ویژگیهای مختلف است. در مرحلة استخراج ویژگی، شش دسته ویژگی شامل قطعهبندی هوشمند، ضرایب موجک، الگوهای مکانی مشترک، ویژگیهای شکلی- زمانی، ویژگیهای فرکانسی و دسته ویژگی ترکیبی الگوهای مکانی مشترک و قطعهبندی، تعریف شدند که برخی از این ویژگیها (مانند ویژگیهای قطعهبندی هوشمند، الگوهای مکانی مشترک و ترکیبی) تا کنون یا مستقیماً برای آشکارسازی P300 به کار نرفته بودند و یا در موارد بسیار معدودی از آنها استفاده شده بود. سپس ویژگیها با معیارهای مختلفی به صورت تک تک و گروهی ارزیابی شدند و در نهایت ترکیبی بهینه از مجموع این ویژگیها به طبقهبند SWLDA داده شد. بدین ترتیب درصد صحت تشخیص مؤلفة P300 با این سیستم به 05/97% رسید که در قیاس با نتایج مطالعات قبلی در این حوزه، نتیجة برتری است.
پردازش سیگنالهای حیاتی
وحید ابوطالبی؛ محمدحسن مرادی؛ محمدعلی خلیلزاده
دوره -1، شماره 1 ، آبان 1383، ، صفحه 25-45
چکیده
مولفه P300 یکی از مهمترین سیگنال های الکتریکی مرتبط با فعالیت های شناختی مغز است. در این تحقیق، با استفاده از تبدیل ویولت گسسته، سیگنال های تک ثبت گرفته شده از روی سر، به مولفه های مختلف فرکانسی تجزیه گردیده و از ضرایب به دست آمده به عنوان ویژگی های مرتبط با فعالیتهای شناختی مورد مطالعه استفاده شده است. بررسی ویژگی ها ...
بیشتر
مولفه P300 یکی از مهمترین سیگنال های الکتریکی مرتبط با فعالیت های شناختی مغز است. در این تحقیق، با استفاده از تبدیل ویولت گسسته، سیگنال های تک ثبت گرفته شده از روی سر، به مولفه های مختلف فرکانسی تجزیه گردیده و از ضرایب به دست آمده به عنوان ویژگی های مرتبط با فعالیتهای شناختی مورد مطالعه استفاده شده است. بررسی ویژگی ها نشان می دهد اغلب پردازش های شناختی مورد بررسی در ویژگی های مربوط به باندهای دلتا و تتا بروز یافته اند و هر دسته شامل چند ویژگی، مربوط به یکی از زیرپردازش های درگیر در طی تولید P300 هستند. هدف از این تحقیق، به عنوان یک گام اولیه برای طراحی روشی برای دروغ سنجی با استفاده از امواج مغزی، پیاده سازی سیستمی بوده که بتواند از روی این ویژگی ها، تک ثبت های حاوی موج P300 را از تک ثبت های فاقد این موج تفکیک نماید.برای این منظور در مرحله اول با استفاده از "تحلیل تفکیکی قدم به قدم" یک تابع تفکیک بهینه به صورت ترکیب خطی نه عدد از این ویژگی ها طرح شد که قادر است با دقت حدود 75 درصد در دادگان آموزش و 71 درصد در دادگان آزمون، تک ثبت های مربوط به تحریک های هدف و غیرهدف را از یکدیگر جدا کند. بررسی های بیشتر نشان داد تنها با استفاده از سیگنال ثبت شده در کانالPz نیز می توان تقریبا به همین میزان تفکیک رسید. در مرحله بعد، برای دسته بندی داده ها از یک استراتژی یاد گیری مدولار متکی به آنالیز مولفه های اصلی و شبکه های عصبی استفاده شد. در نهایت با تعلیم این سیستم با ثبت های موجود، در بهترین وضعیت از حالات پیاده سازی شده، حداکثر دقت تفکیک حدود 76 درصد روی دادگان آموزش و حدود 72 درصد روی دادگان آزمون به دست آمد.