@article { author = {Erfanian Omidvar, Abbas}, title = {Neural Network Modeling Of Electrically Stimulated Muscle Under Non-Isometric Conditions}, journal = {Iranian Journal of Biomedical Engineering}, volume = {-2}, number = {1}, pages = {81-92}, year = {2005}, publisher = {Iranian Society for Biomedical Engineering}, issn = {5869-2008}, eissn = {9685-8006}, doi = {10.22041/ijbme.2005.13585}, abstract = {This paper is concerned with developing a force-generating model of electrically stimulated muscle under non-isometric condition. Hill-based muscle models have been the most popular structure. This type of muscle model was constructed as a combination of different independent blocks (i.e., activation dynamics, force-length and force-velocity relations, and series elastic element). The model assumes that the force-length and the force-velocity relations are uncoupled from the activation dynamics. However, some studies suggest that the shapes of the active force-length and the active force-velocity curves change with the level of the activation. Moreover, the "active state" block of the Hill-type model has no physical interpretation. To overcome the limitation of the Hill-type model, we used the multilayer perceptron (MLP) with back-propagation learning algorithm and Radial Basis Function (RBF) network with stochastic gradient learning rule for muscle modeling, where the stimulation signal, muscle length, velocity of length perturbation, and past measured or predicted force constitute the input of the neural model, and the predicted force is the output. Two modes of network operation are of interest: a time-varying network which allows updating the parameters of network to continue after convergence, and a time-invariant neural network with parameters fixed after convergence. The results show that time-varying and time-invariant neural networks would be able to track the muscle force with accuracy up to 99.5% and 95%, respectively. In addition, the results show that the accuracy of muscle force prediction depends on the structure of neural network. The prediction accuracy of RBF network after 1000 training epochs is higher than that of MLP network after 5000 training epochs. }, keywords = {Neural network,Functional electrical stimulation,Muscle modeling,Neuromuscular systems}, title_fa = {مدل شبکه عصبی از عضله تحریک شده در شرایط غیر ایزومتریک}, abstract_fa = {مدل جدیدی از عضله تحریک شده در شرایط غیر ایزومتریک ارایه شده است. مدل های ارایه شده کنونی مبتنی بر ساختار مدل هیل هستند. در این ساختار، رفتار عضله به بخش های مستقل از یکدیگر تجزیه شده و فرض می شود که این بخش ها ارتباطی با یکدیگر ندارند، در صورت که این تجزیه و عدم وابستگی بخش ها به یکدیگر، واقعیت فیزیکی ندارد. به منظور رفع محدودیت های مدل های ساختار هیل، در این تحقیق از شبکه های عصبی دینامیک به عنوان ابزاری جهت مدل سازی عضله در شرایط غیر ایزومتریک استفاده شده است. برای این منظور، دو نوع شبکه عصبی به کار گرفته شد: شبکه پرسپترون با الگوریتم یادگیری پس انتشار خطا و شبکه عصبی مبتنی بر توابع پایه شعاعی الگوریتم یادگیری گرادیان تصادفی. نتایج این تحقیق نشان می دهد مدل های عصبی قادر به پیش بینی دقیق تری از میزان نیرو انقباض عضلانی در شرایط غیر ایزومتریک نسبت به مدل های پایه هیل هستند. از آنجایی که عضله دارای رفتار متغیر با زمان است دو ساختار متفاوت، شبکه عصبی متغیر با زمان و نامتغیر با زمان برای مدل سازی عضله در نظر گرفته شده است. نتایج نشان می دهد مدل های عصبی متغیر با زمان، با دقت 99.5% و مدل های نامتغیر با زمان، با دقت 95% قادر به پیش بینی نیروی انقباض عضله تحریک شده در شرایط غیر ایزومتریک هستند. علاوه بر این، نتایج این تحقیق نشان می دهد دقت پیش بینی شبکه عصبی به ساختار شبکه بستگی دارد. با وجود ساده بودن ساختار شبکه عصبی مبتنی بر توابع شعاعی نسبت به ساختار شبکه عصبی پس انتشار خطا، دقت پیش بینی با شبکه عصبی مبتنی بر توابع شعاعی با 1000 دوره یادگیری بیشتر از شبکه عصبی پس انتشار خطا با 5000 دوره یادگیری است.}, keywords_fa = {عضله,مدل سازی,شبکه های عصبی,تحریک الکتریکی کارکردی,سیستم های عصبی– عضلانی}, url = {https://www.ijbme.org/article_13585.html}, eprint = {https://www.ijbme.org/article_13585_4eccdcdf02e454bc1c906189e4c7b3c9.pdf} }