نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی پزشکی، گروه بیوالکتریک، دانشکده مهندسی پزشکی، دانشگاه صنعتی امیرکبیر، تهران

2 استاد، گروه بیوالکتریک، دانشکده مهندسی پزشکی، دانشگاه صنعتی امیرکبیر، تهران

3 دانشجوی کارشناسی ارشد مهندسی پزشکی گروه بیوالکتریک، دانشکده مهندسی پزشکی ، دانشگاه صنعتی امیرکبیر، تهران

10.22041/ijbme.2013.13090

چکیده

اپیزودهای افت فشار خون حاد یکی از اختلالات همودینامیکی رایج در طیف گسترد های از بیماران است. متاسفانه نرخ تلفات در بین بیماران مبتلا به این اختلال بسیار بالا می باشد. عوامل مختلفی در وقوع این اختلال فیزیولوژیک موثر هستند که هر کدام داری منشا متفاوت می باشند. پیش آگهی اپیزودهای افت فشار خون حاد کمک شایانی به درمان مناسب و کاهش تلفات این بیماران خواهد نمود. با پی شآگهی این اختلال فیزیولوژیکی، پزشکان قادر خواهند بود علت وقوع این اختلال را با استفاده از بررس یهای بالینی مختلف دریافته و درمان مناسبی بر اساس عامل وقوع آن، انتخاب کنند. در این پژوهش به منظور پیش آگهی اپیزودهای افت فشار خون حاد در بازه یک ساعت آینده، دو نوع ویژگی آماری از پارامترهای همودینامیکی و ویژگی های آشوبناک از سری های زمانی فیزیولوژیکی موجود در بازه دو ساعتی منتهی به به ابتدای بازه پیش بینی، استخراج گردید. سپس ویژگی های برگزیده با استفاده از الگوریتم ژنتیک، توسط ماشین بردار پشتیبان طبقه بندی شدند. دقت پیش آگهی برای ویژگ یهای آماری پارامترهای فیزیولوژیکی 5/87 درصد و برای ویژگی های آشوبی 85 درصد حاصل گردید. در ادامه به منظور استفاده از جنبههای مختلف اطلاعات موجود در دو دسته ویژگی و بهبود دقت پیش آگهی، فرآیند انتخاب ویژگی به صورت همزمان برای هر دو دسته ویژگی استخراج شده، اعمال گردید و بهترین ترکیب از میان هر دو دسته ویژگی انتخاب شد. دقت پیش آگهی برای دسته ویژگی تلفیقی بهینه، 95 درصد حاصل شد که در مقایسه با نتایج مطالعات پیشین بر روی مجموعه داده مشابه، بهبود قابل توجهی حاصل گردید.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Prognosis of Acute Hypotension Episodes Using Physiological and Chaotic Features

نویسندگان [English]

  • Amin Janghorbani 1
  • Mohammad Hasan Moradi 2
  • Abdollah Arasteh 3

1 Department of Biomedical Engineering, AmirKabir University of Technology

2 Department of Biomedical Engineering, AmirKabir University of Technology

3 Department of Electrical Engineering, Sharif University of Technology

چکیده [English]

Acute hypotension episodes (AHEs) are one of the hemodynamic instabilities with high mortality rate that is frequent among many groups of patients. Prognosis of acute hypotension episodes can help clinicians to diagnose the cause of this physiological disorder and select proper treatment based on this diagnosis. In this study two groups of features, physiological and chaotic features, were extracted from the physiological time series to be applied for prediction of AHEs in the future 1 hour time interval. The best set of the features from the extracted features were selected using Genetic Algorithm (GA) and were classified by SVM. The prediction accuracy for physiological features was 87.5% and for chaotic features was 85%. In order to improve prediction accuracy, physiological and chaotic features were employed simultaneously in feature selection and the best combination of these features was selected by GA and classified by SVM. The best prognosis accuracy, which was achieved in this study by classification of the selected features, was 95% that was better than other previously studies on the same database.

کلیدواژه‌ها [English]

  • Acute Hypotension Episodes
  • Prognosis
  • Physiological Features
  • Chaotic Features
  • feature selection
  • genetic algorithm
[1]     A. S. Fauci, et al., Harrison's Principles of Internal Medicine, 17th Edition: McGraw-Hill, 2008.
[2]     G. B. Moody and L. H. Lehman, "Predicting acute hypotensive episodes: The 10th annual PhysioNet/Computers in Cardiology Challenge," in Computers in Cardiology, 2009, 2009, pp. 541-544.
[3]     ‌B. Hartmann, et al., "The Incidence and Risk Factors for Hypotension After Spinal Anesthesia Induction: An Analysis with Automated Data Collection," Anesthesia & Analgesia, vol. 94, pp. 1521-1529, June 1, 2002 2002.
[4]     G. Wick and J. Vijil, "Intradialytic Hypotension: A Review of Current Therapies," Kidney, vol. 17, pp. 63-67, 2008.
[5]     ‌S. Severi, et al., "Heart rate variability spectral indices for haemodynamic classification of haemodialysis patients," Physiological measurement, vol. 18, pp. 339-353, 1997.
[6]     K. Solem, et al., "Detection of hypotension during hemodialysis using the ECG," in Computers in Cardiology, 2004, 2004, pp. 717-720.
[7]     E. Mancini, et al., "Short term variability of oxygen saturation during hemodialysis is a warning parameter for hypotension appearance," in Computers in Cardiology, 2008, 2008, pp. 881-884.
[8]     ‌National Institutes of Health. (2009, February). Predicting Acute Hypotensive Episodes Home Page. Available: http://www.physionet.org/challenge/2009.
[9]      X. Chen, et al., "Forecasting acute hypotensive episodes in intensive care patients based on a peripheral arterial blood pressure waveform," in Computers in Cardiology, 2009, 2009, pp. 545-548.
[10] ‌F. Chiarugi, et al., "Predicting the occurrence of acute hypotensive episodes: The PhysioNet Challenge," in Computers in Cardiology, 2009, 2009, pp. 621-624.
[11] D. Hayn, et al., "A biosignal analysis system applied for developing an algorithm predicting critical situations of high risk cardiac patients by hemodynamic monitoring," in Computers in Cardiology, 2009, 2009, pp. 629-632.
[12] T. C. T. Ho and X. Chen, "Utilizing histogram to identify patients using pressors for acute hypotension," in Computers in Cardiology, 2009, 2009, pp. 797-800.
[13] F. Jousset, et al., "Computers in Cardiology / Physionet Challenge 2009: Predicting acute hypotensive episodes," in Computers in Cardiology, 2009, 2009, pp. 637-640.
[14] P. Langley, et al., "Predicting acute hypotensive episodes from mean arterial pressure," in Computers in Cardiology, 2009, 2009, pp. 553-556.
[15] ‌M. A. Mneimneh and R. J. Povinelli, "A rule-based approach for the prediction of acute hypotensive episodes," in Computers in Cardiology, 2009, 2009, pp. 557-560.
[16] J. H. Henriques and T. R. Rocha, "Prediction of acute hypotensive episodes using neural network multi-models," in Computers in Cardiology, 2009, 2009, pp. 549-552.
[17] T. Rocha, et al., "Wavelet based time series forecast with application to acute hypotensive episodes prediction," in Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, 2010, pp. 2403-2406.
[18] A. Ghaffari, et al., "A Methodology for Prediction of Acute Hypotensive Episodes in ICU via a Risk Scoring Model including Analysis of ST-Segment Variations," Cardiovascular Engineering, vol. 10, pp. 12-29, 2010.
[19] F. A. Afsar, "Prediction of Acute Hypotension Episodes in Patients Taking Pressor Medication Using Modeling of Arterial Blood Pressure Waveforms," in Bioinformatics and Biomedical Engineering (iCBBE), 2010 4th International Conference on, 2010, pp. 1-4.
[20] A. Singh, et al., "Hidden Markov Models for modeling blood pressure data to predict acute hypotension," in Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on, 2010, pp. 550-553.
[21] M. Akay, et al., Nonlinear Biomedical Signal Processing: Dynamic analysis and modeling: IEEE Press, 2000.
[22] ‌S. Cerutti, et al., "Chaotic characteristics of heart rate and arterial pressure variability signals in 24 hours," in Computers in Cardiology 1991, Proceedings., 1991, pp. 705-708.
[23] ‌B. Y. Liau, et al., "Assessment of mean arterial blood pressure using spectral and chaotic analyses in different antihypertensive drug treatments," in Computers in Cardiology, 2004, 2004, pp. 701-704.
[24] ‌N. Lovell, et al., "Chaotic behavior of blood pressure and heart rate in the conscious dog," in Engineering in Medicine and Biology Society, 1996. Bridging Disciplines for Biomedicine. Proceedings of the 18th Annual International Conference of the IEEE, 1996, pp. 1612-1613 vol.4.
[25] National Institutes of Health. (2009). Database of Prediction of Acute Hypotension Episodes challenge Available: http://physionet.org/pn3/challenge/2009/test-set-b/
[26] C. Hanqing, et al., "Predicting ICU hemodynamic instability using continuous multiparameter trends," in Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, 2008, pp. 3803-3806.
[27] F. L. Gobel, et al., "The rate-pressure product as an index of myocardial oxygen consumption during exercise in patients with angina pectoris," Circulation, vol. 57, pp. 549-56, March 1, 1978 1978.
[28] Ionescu, et al., "Advanced biosignal processing," in Advanced biosignal processing, A. Nait-Ali, Ed., ed Berlin :: Springer, 2009, p. 378
[29] D. Yılmaz and N. F. Güler, "Analysis of the Doppler signals using largest Lyapunov exponent and correlation dimension in healthy and stenosed internal carotid artery patients," Digital Signal Processing, vol. 20, pp. 401-409, 2010.
[30] A. Mekler, "Calculation of EEG correlation dimension: Large massifs of experimental data," Computer Methods and Programs in Biomedicine, vol. 92, pp. 154-160, 2008.
[31] ‌P. Paramanathan and R. Uthayakumar, "Application of fractal theory in analysis of human electroencephalographic signals," Computers in Biology and Medicine, vol. 38, pp. 372-378, 2008.
[32] C. Gómez, et al., "Use of the Higuchi's fractal dimension for the analysis of MEG recordings from Alzheimer's disease patients," Medical Engineering & Physics, vol. 31, pp. 306-313, 2009.
[33] G. M. Foody and A. Mathur, "A relative evaluation of multiclass image classification by support vector machines," Geoscience and Remote Sensing, IEEE Transactions on, vol. 42, pp. 1335-1343, 2004.
[34] A. Sun, et al., "On strategies for imbalanced text classification using SVM: A comparative study," Decision Support Systems, vol. 48, pp. 191-201, 2009.
[35] D. A. Coley, An Introduction to Genetic Algorithms for Scientists and Engineers: World Scientific, 1999.