نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی نانومواد، گروه پژوهشی بیومواد، دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان

2 استاد، گروه پژوهشی بیومواد، دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان. استاد، مرکز تحقیقات مواد دندانی، دانشکده دندان‌پزشکی، دانشگاه علوم پزشکی اصفهان

3 دانشیار، دانشکده مهندسی مواد، دانشگاه مالک اشتر

10.22041/ijbme.2012.13115

چکیده

هدف از پژوهش حاضر ساخت و مشخصه‌یابی داربست کامپوزیت پلی ε-کاپرولاکتون/ نانوذرات منیزیم فلوئور آپاتیت (PCL/nMg-FA) با استفاده از روش الکتروریسندگی است. کامپوزیت مورد نظر با استفاده از بهینه‌سازی پارامترهای فرایند الکتروریسی مانند حلال، غلظت پلیمر و درصد بیوسرامیک موجود در کامپوزیت تهیه شد. نتایج نشان داد که اندازه قطر الیاف با تنظیم ویسکوزیته و هدایت الکتریکی محلول، تغییر می‌کند. نمونه‌های بهینه شده با استفاده از میکروسکوپ الکترونی عبوری (TEM)، میکروسکوپ الکترونی روبشی (SEM)، پراش پرتو ایکس (XRD)، تحلیل توزیع انرژی پرتو ایکس (EDX) و تحلیل حرارتی وزن‌سنجی (TGA) بررسی شدند. نتایج بدست آمده از TEMو EDXنشان دادند نانوذرات nMg-FAبه صورت کاملاً همگن درون الیاف پلیمری قرار گرفته‌اند. نکته قابل توجه این است که در طی فرایند ساخت از هیچ‌گونه ماده سورفکتانت به عنوان عامل اصلاح‌ساز سطحی استفاده نشد. همچنین نتایج XRDنشان داد که هیچ واکنش شیمیایی بین اجزای کامپوزیت رخ نداده است. از طرفی با افزایش مقدار نانوذرات درون کامپوزیت، استحکام مکانیکی و نیز مقاومت حرارتی داربست افزایش یافت.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Development and characterization of electrospun Mg-doped fluorapatite nanoparticles – PCL nanocomposite scaffolds for bone tissue engineering

نویسندگان [English]

  • Zeynab Fereshteh 1
  • Mohammad Hossein Fathi 2
  • Reza Mozaffarinia 3

1 PhD student, Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology

2 2Professor, Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology. Dental Materials Research Center, Isfahan University of Medical Sciences

3 Associate Professor, MalekAshtar University of Technology, Department of Materials Engineering

چکیده [English]

The aim of this study was to prepare and characterize the novel poly (ε-caprolactone) / Mg-doped fluorapatite nanoparticles (PCL / nMg-FA) composite scaffolds by electrospinning method. The optimized composite was achieved by changing of electrospinning parameters such as solvent, polymer concentration, applied voltage, nozzle to collector distance and content of ceramic. It was shown that the diameter size of fibers decreased by adjusting the viscosity and conductivity solution. Optimal samples were studied with transmission electron microscopy (TEM), scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) and thermogravimetric analysis (TGA). According to TEM and the X-ray maps of the scaffolds, Mg-FA particles were homogeneously dispersed into the nanofibers without any agglomeration. It is noteworthy that was not any surfactant in this study. Also results of XRD show no chemical reactions between polymeric solution components. Mechanical properties of the scaffolds were also evaluated. Results showed that tensional strength of scaffolds and also thermal stability increased by increasing the weight ratio of nanoparticles up to 5 wt. %.

کلیدواژه‌ها [English]

  • Electrospinning
  • Nanocomposite
  • Mg-doped fluorapatite nanoparticle

[[1]] Lanza R., Langer R., Vacanti J., Principles of Tissue Engineering; 3nd ed. Academic Press, San Diego. Bailey, AE, 1979.

[2] Wang M., Developing bioactive composite materials for tissue replacement; Biomaterials, 2003; 24: 2133-2151.

[3] Li W.J., Laurencin C.T., Caterson E.J., Tuan R.S., Electrospun nanofibrous structure: a novel scaffold for tissue engineering; J. Biomed Mater Res, 2002; 60: 613-621.

[4] Huang Z.M., Zhang  Y.Z., Kotaki, M., Ramakaishna S., A review on nanocomposites; Comp. Sci. Tech., 2003; 63: 2223.

[5] Li W.J., Tuli R., Okafor C., Derfoul A., Danielson K.G., Hall D.G., Tuan R. S., A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells; Biomaterials, 2005; 26: 599.

[6] Witte F., Hort N., Vogt C., Cohen S., Kainer K.U., Willumeit R., Degradable biomaterials based on magnesium corrosion; J. Curr.Opin.in Solid-State and Mater. Sci., 2008; 12: 63.

[7] Yun Y., Dong Z., Yong D., Schulz M., Shanov V., Biodegradable Mg corrosion and osteoblast cell culture studies; Mater.Sci. Eng. C, 2009; 29: 1814.

[8] Place E.S., George J., Williams C.K., Stevens M.M., Synthetic polymer scaffolds for tissue engineering; Chem. Soc. Rev., 2009; 38:1139.

[9] Lei Y., Rai B., Ho K., Teoh S., In vitro degradation of novel bioactive polycaprolactone–20% tricalcium phosphate composite scaffolds for bone engineering; Mater SciEng C, 2007; 27: 293.

[10] Taddei P., Tinti A., Reggiani M., Fagnano C., In vitro mineralization of bioresorbablepoly (ε-caprolactone)/apatite composites for bone tissue engineering: a vibrational and thermal investigation; J. MolStruct, 2005; 744: 135.

[1[1]] Chen B., Sun K., Mechanical and dynamic viscoelastic properties of hydroxyapatite reinforced poly(ε-caprolactone); Polym Test, 2005; 24: 978.

[[1]2] Ciapetti G., Ambrosio L., Savarino L., Granchi D., Cenni E., Baldini N., Osteoblast growth and function in porous poly ε-caprolactone matrices for bone repair: a preliminary study; Biomaterials, 2003; 24: 3815.

[[1]3] Li W., Cooper J., Mauck R., Tuan R., Fabrication and characterization of six electrospun poly([alpha]-hydroxy ester)-based fibrous scaffolds for tissue engineering applications; ActaBiomater, 2006; 2: 377.

[[1]4] Kheradmandfard M., Fathi M.H., Preparation and characterization of Mg-doped fluorapatite nanopowders by sol–gel method; Journal of Alloys and Compounds, 2010; 504: 141.

[[1]5] Bhardwaj N., Kundu S.C., Electrospinning: A fascinating fiber fabrication technique; Biotechnology Advances, 2010; 28: 325.

[[1]6] Neto W.A.R., Pereira I.H.L., Ayres E., Paula A.C.C., Averous L., Góes A.M., Oréfice R.L., Bretas R.E.S., Influence of the microstructure and mechanical strength of nanofibers of biodegradable polymers with hydroxyapatite in stem cells growth. Electrospinning, characterization and cell viability; Polymer Degradation and Stability, 2012; 97:2037.

[[1]7] Hohman M.M., Shin Y.M., Rutledge G., Brenner M.P., Electrospinning and electrically forced jets.II. Applications; Phys Fluids, 2001; 13: 2221.

[[1]8] Moghe A.K., Hufenus R. Hudson S.M., Gupta B.S., Effect of the addition of a fugitive salt on electrospinnability of poly (3-caprolactone); Polymer, 2009; 50: 3311.

[[1]9] Yang F., Both S.K., Yang X., Walboomers X. F., Jansen J.A., Development of an electrospun nano-apatite/PCL composite membrane for GTR/GBR application; ActaBiomaterialia, 2009; 5: 3295.

[20] Moghe A.K., Hufenus R. Hudson S.M., Gupta B.S., Effect of the addition of a fugitive salt on electrospinnability of poly (3-caprolactone); Polymer, 2009; 50: 3311.

[21] Schueren L. V., Schoenmaker B. D., Kalaoglu O. I., Clerck, K. D., An alternative solvent system for the steady state electrospinning of polycaprolactone; European Polymer Journal, 2011; 47: 1256.

[22] Lu C., Chen P., Li, J., Zhang Y., Computer simulation of electrospinning. Part I. Effect of solvent in electrospinning; Polymer, 2006; 47: 915.

[23] Thompson C.J., Chase G.G., Yarin A.L., Reneker D.H., Effects of parameters on nanofiber diameter determined from electrospinning model; Polymer, 2007; 48: 6913.

[24] Lowery J.L., Datta N., Rutledge G.C., Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly (3-caprolactone) fibrous mats; Biomaterials, 2010; 31: 491.

[25] Wang Y., Liu L., Guo S., Characterization of biodegradable and cytocompatible nano-hydroxyapatite/polycaprolactone porous scaffolds in degradation in vitro; Polym. Degrad. Stab., 2010; 95: 207.

[26] Johari N., Fathi M.H., Golozar M.A., Fabrication, characterization and evaluation of the mechanical properties of poly (ε-caprolactone) / nano-fluoridated hydroxyapatite scaffold for bone tissue engineering; Composites: Part B, 2012; 43: 1671.

[27] Diba M., Fathi M.H., Kharaziha M., Novel forsterite/polycaprolactone nanocomposite scaffold for tissue engineering applications; Materials Letters, 2011; 65: 1931.

[28] Yang F., Both S.K., Yang X., Walboomers X. F., Jansen J.A., Development of an electrospun nano-apatite/PCL composite membrane for GTR/GBR application; ActaBiomaterialia, 2009; 5: 3295.

[29] Bianco A., Federico E.D., Moscatelli I., Camaioni A., Armentano I., Campagnolo L., Dottori M., Kenny J.M., Siracusa G., Gusmano G., Electrospun poly(ε-caprolactone)/Ca-deficient hydroxyapatite nanohybrids: Microstructure, mechanical properties and cell response by murine embryonic stem cells; Materials Science and Engineering C, 2009; 29: 2063.

[30] Wong S. C., Baji A., Leng S., Effect of fiber diameter on tensile properties of electrospun poly(ε-caprolactone); Polymer, 2008; 49, 4713.