نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد،گروه بیومکانیک، دانشکده مهندسی پزشکی، دانشگاه صنعتی امیر کبیر(پلی تکنیک تهران)

2 استادیار، گروه بیومکانیک، دانشکده مهندسی پزشکی، دانشگاه صنعتی امیر کبیر(پلی تکنیک تهران)

10.22041/ijbme.2011.13141

چکیده

با گسترش تکنولوژی در سطح دنیا و افزایش روزافزون تجهیزات اشتعال‌زا و به سبب آن افزایش میزان مرگ و میر بر اثر جراحات ناشی از سوختگی شایسته است پدیده سوختگی از مبحث مهندسی پزشکی و دیدگاه بیومکانیکی بررسی شود. علاوه بر این آب و هوای گرم نیز باعث ایجاد صدمات سوختگی و تخریب بافت پوستی می‌شود. در روزهای گرم تابستان افراد زیادی بر اثر گرمازدگی، تبخیر زیاد آب بدن و سوختگی فوت می‌کنند، در نتیجه مطالعه حرارتی پوست می‌تواند به درک بهتر سیستم کنترل دمای بدن کمک کند و باعث پیشرفت در حوزه محافظ‌های پوستی و استانداردهای ایمنی شود. در محیط گرم، تعرق مهمترین عامل برای تغییر دما، بر اساس سیستم تنظیم دمای بدن است. در این پژوهش ابتدا فرمولبندی و حل به روش تفاضل محدود معکوس مدل با روش زاو و همکاران ارزیابی شده است. سپس برای بسط دادن مدل انتقال حرارت زیستی پنس با اضافه کردن جملة تبخیر به شرط مرزی سطح پوست و تغییر شرایط مرزی و افزودن مؤلفه تبخیر به آن، نتایجی در مورد توزیع دما در پوست بدست آمده است. این مدل برای تحلیل اثر تغییر دمای محیط، شرایط محیطی مختلف و فعالیت بدنی مشخص بر دمای گذرای پوست و همچنین برای تعیین دمای نهایی بافت زنده به کار گرفته شده است. نتایج نشان می‌دهد در صورت عدم تعرق، دمای بدن به سرعت افزایش یافته؛ گرمازدگی و سوختگی رخ خواهد داد و نیاز فوری به نوشیدن آب خواهد بود. همچنین افزایش  دمای محیط، محل بیشینه درجه حرارت را به سطح پوست منتقل میکند. برای مثال، بیشترین مقدار دما در     mm9و mm 6/7از سطح پوست به ترتیب برای دمای محیط50°C و60°C رخ می‌دهد؛ یعنی بیشترین آسیب دیدگی حرارتی در این محل واقع می‌شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The Effects of Evaporation and Convection on Skin Tissue Temperature Distribution

نویسندگان [English]

  • Mohammad Shams Kolahi 1
  • Ataollah Hashemi 2

1 M.Sc Student, Biomechanics Department, Faculty of Biomedical Engineering, Amirkabir University of Technology

2 Assistant Professor, Biomechanics Department, Faculty of Biomedical Engineering, Amirkabir University of Technology

چکیده [English]

Recent technological and industrial advances have increased the number of skin burns due to human body exposure to heat in a fire or hot and mechanized environment. In addition, hot environment can produce a strain on a human body leading to discomfort and heat stress and even death. In hot summer days, many people suffer from heat stroke, dehydration and loss of body fluid. Therefore, the subject of studying thermal energy transport in living tissues is useful for assessing skin burns accurately, better understanding the thermoregulatory system of the body and for developing thermal protection standards. In a hot environment, the most important factor to control the body temperature is evaporation. Accordingly, this study solves one dimensional Pennes’ bio-heat equation by means of backward finite difference formulation. Physical and physiological factors taken into account are: sweat secretion, capillary blood circulation (perfusion), metabolic heat, heat and water exchange with the environment through convection and evaporation. Initially, the model is validated using the work of Zhao et al. Then, the evaporation term is added to the model to study the effect of ambient temperature variation on skin tissue temperature. The results show that thermal disease such as hyperthermia can be expected if uncovered skin is held for a specific time at hot environment. It is observed that increasing ambient temperature causes a shift in the location of the maximum temperature toward the surface of the skin, i.e., the maximum temperature occurs at the depth of about 9 and 7.6 mm of skin surface for ambient temperature of 50 and 60°C, respectively.

کلیدواژه‌ها [English]

  • Pennes’ Bioheat
  • Biomechanics
  • Skin temperature
  • Evaporation
  • Convection
  • Contact analysis
  • Finite difference Methods

[1] Zhao J.J., Zhang J., Kang N., Yang F., A two level finite difference scheme for one dimensional Pennesbioheat equation; Applied Mathematics and Computation, 2005; 171: 320–331.

[2] Dai W.Z., Zhang J., A three level finite difference scheme for solving the Pennesbioheat transfer in a triple-layered skin structure; Technical Report No. 343-02, Department of Computer Science, University of Kentucky, Lexington, KY, 2002.

[3] Chato J.C., Fundamentals of Bioheat Transfer; Springer-Verlag, Berin, 1989.

[4] Gautherie M., Clinical Thermology: Thermotherapy, vols. 1–4, Springer-Verlag, Heidelberg, 1990.

[5] Killer K.R., Hayes L.J., Analysis of tissue injury by burning: comparison of in situ and skin flap models; Int. J. Heat & Mass Transfer, 1991; 34: 1393–1406.

[6] Deng Z.S, Liu J., Analytical study on bioheat transfer problems with spatial or transient heating on skin surface or inside biological bodies; ASME J BiomechEng. 2002; 120:638–49.

[7] Ng EYK, Chua LT. Comparison of one-and two-dimensional programmes for predicting the state of skin burns; Burns, 2002; 28:27–34.

[8] Liu J, Xu L.X. Estimation of blood perfusion using phase shift in temperature response to sinusoidal heating the skin surface; IEEE Trans Biomed Eng, 1999; 46:1037–43.

[9] Deng Z.S., Liu J. Mathematical modeling of temperature mapping over skin surface and its implementation in thermal disease diagnostics; ComputBiol Med, 2004; 34:495–521.

[10] Miyakawa M., Bolomey J.C. (Eds.), Non-invasive Thermometry of Human Body; CRC Press, Boca Raton, 1996.

[11] Pennes H.H., Analysis of tissue and arterial temperature in the resting human forearm; J. Appl. Physiol., 1948; 1:93–122.

[12] Liu E.H., Saidel G.M., Harasaki H., Model analysis of tissue responses to transient and chronic heating; Ann Biomed Eng, 2003; 31: 1007–1048.

[13] Ng EYK, Sudharsan N.M., An improved three-dimensional direct numerical modeling and thermal analysis of a female breast with tumour; ProcInstMechEng Part H–J Eng Med,  2001; 215: 25–37.

[14] Ng EYK, Sudharsan N.M., Numerical uncertainty and perfusion induced instability in bioheat equation: its importance in thermographic interpretation; J Med Eng Tech, 2001; 25:222–229.

[15] Lefevre J., Engergétique et chaleuranimale, Masson; 1911; Paris.

[16] Liu J., Chen X., Xu L.X., New thermal wave aspects on burn evaluation of skin subjected to instantaneous heating; IEEE Trans. Biomed. Eng., 1999; 46: 420–428.

[17] Bu¨ ttner B., Effects of extreme heat on man; JAMA, 1950; 144: 732–738.

[18] Alekseev S.I., Ziskin M.C., Local heating of human

       skin by millimeter waves: a kinetics study; Bioelectromagnetics, 2003; 21:571–81.

[19] Walters T.J., Ryan K.L., Nelson D.A., Blick D.W., Mason P.A., Effects of blood flow on skin heating        induced by millimeter wave irradiation in humans; Health Phys, 2004; 86:115–20.

[20] Wyndham C.H., Atkins A.R., A Physiological Scheme and Mathematical Model of Temperature Regulation in Man; PflugersArchiv., 1968; 303: 14-30.

[21] Najarian S., Heat and Mass Transfer in biological System; Amirkabir University of Technogy,2006; Tehran.

[22] Wissler E.H., A mathematical model of the human thermal system; Bulletin of Mathematical Biophysics, 1964; 26:147-166.

[23]Ashin K., Datta, Dekker M., Biological and Bioenvironmental Heat and Mass Transfer; 2002.

[24] Huang H.W., Chen Z.P., Roemer R.B., A counter current vascular network model of heat transfer in tissues; J. Biomech. Eng., 1996; 118:120–129.

[25] Dai W., Bejan A., Tang X., Zhang L., Nassar R., Optimal temperature distribution in a 3D triple layered skin structure with embedded vasculature; J. Appl. Phys., 2006; 99:1047-02.

[26] Tang X., Dai W., Nassar R., Bejan A., Optimal temperature distribution in a 3D triple layered skin structure embedded with artery and vein vasculature, Numer; Heat Transfer, 2006; A50: 809–843.

[27] Jakob M., Heat Transfer; Johan wiley& sons, New York, 1949.

[28] Lienhard J.H.I.V., A Heat Transfer Textbook; Phlogiston press. Cambridge. massachusetts. U.S.A(2008) Zhong-

[29] ISO/FDIS 7933, Ergonomics of the thermal environment –Analytical determination and interpretation of heat stress using calculation of the predicted heat strain; ISO/TC 159/SC 5, 2004.

[30] Deng S., Liu J., Monte Carlo Method to solve Multidimensional Bioheat Transfer problem; Numerical Heat Transfer, 2002; B42.

[31] Dillenseger J.L., Esneault S., Garnier C., Computation of the Bioheat Transfer Equation for the HCC Ultrasound Surgery Therapy Modeling; Confproc: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2008; 1: 2538-2541.

[32] Anderson G.T., Burnside G., A noninvasive technique to measure perfusion using a focused ultrasound heating source and a tissue surface temperature measurement; ProcAdvMeasComput Temp Biomed, 1990; 147:31–35.

[33] Ozen S., Helhel S., Cerezci O., Heat analysis of biological tissue exposed to microwave by using thermal wave model of bio-heat transfer; Burns, 2008; 34: 45-49.