مدلسازی رشد سرطان با توجه به تاثیرات سلول های سیستم ایمنی و ماتریکس خارج سلولی در فضای دو بعدی و با بکارگیری اتوماتای سلولی و تئوری بازی ها

نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 کارشناس ارشد مهندسی پزشکی، دانشکده مهندسی پزشکی، دانشگاه آزاد اسلامی واحد علوم وتحقیقات

2 استادیار گروه مهندسی پزشکی، مرکز تحقیقات بیومدیکال ورباتیک، دانشگاه علوم پزشکی تهران

10.22041/ijbme.2011.13157

چکیده

در این مقالهبا در نظر گرفتن مواد غذایی، ماتریکس خارج سلولی و سلول های سیستم ایمنی بعنوان پارامتر های تاثیر گذار در نحوه رشد، گسترش و مورفولوژی بافت سرطانی به بررسی مدلی بر اساس اتوماتای سلولی و تئوری بازی ها در زمینه رشد سرطان پرداخته ایم. اتوماتای سلولی در بررسی مسائل زیستی از اهمیت زیادی برخوردار است و تئوری بازی ها در شناختن تعامل میان عنصر های تصمیم گیرنده حائز اهمیت می باشد. در این تحقیق برای بررسی رفتار و گسترش سلول های سرطانی دو مدل را مطرح می نماییم. در مدل اول هدف ما از ارائه مدل بررسی نحوه رشد و گسترش سلول های سرطانی با توجه به مواد غذایی (اکسیژن) موجود در بافت می باشد. در نهایت جهت اعتبارسنجی مدل، نتایج شبیه سازی ها را با نتایج مقالات دیگر مقایسه نموده ایم. در نتایج ملاحظه خواهید نمود که میزان مواد غذایی (اکسیژن) تاثیر قابل ملاحظه ای در تعداد سلول های سرطانی ایجاد شده دارد، ولی این تاثیر در رابطه با تهاجم سلول های سرطانی به مراتب کمتر می باشد. لازم به ذکر می باشد که نتایج مدل پیشنهادی از جواب های خطی فاصله گرفته است که این بیانگر بهبود نتایج مدل می باشد، همان گونه که در نتایج قابل ملاحظه می باشد این مدل قابلیت ایجاد متاستاز را نیز پوشش می دهد. در مدل دوم نحوه عملکرد متقابل سلول های سرطانی و سلول های سیستم ایمنی مورد بررسی قرار گرفته است و برای این منظور از اتوماتای سلولی و تئوری بازی ها استفاده نموده ایم. بر اساس اتوماتای سلولی دو بعدی مدلی ارائه می شود که نحوه عملکرد اتوماتای سلولی توسط تئوری بازیها تعیین می گردد. در واقع قوانین اتوماتای سلولی بر اساس جدول تئوری بازی ها تعیین می شود و هر یک از عناصر سیستم بصورت جداگانه از قابلیت تصمیم گیری برخوردار می باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling of tumor growth by considering immune system cells and extracellular matrix in 2 dimensions by using cellular automata and game theory

نویسندگان [English]

  • Siavash Mazdeyasna 1
  • Amir Homayoun Jafari 2
1 M.Sc Student, Faculty of biomedical Engineering, Islamic Azad University, science and Research Branch
2 Assistant Professor, Faculty of biomedical Engineering, Islamic Azad University, science and Research Branch
چکیده [English]

In this paper, two models are introduced based on cellular automata and the game theory to study behavior, growth, development and morphology of cancerous cells by assuming nutrition supplies, extracellular matrix, and immune cells. A two-dimensional cellular automaton combine with game theory is considered as the structure of model. The cellular automata modeling framework can be an efficient approach to a number of biological problems; and game theory aims to help us to understand situations in which decision-makers interact such as competitive activity. In the first model, we consider different oxygen supplies to study the growth and invasion of cancerous cell. The results of our simulation are validated by the results of other articles. The results show that the number of cancerous cells is easily changed by changing amount of oxygen supplies, but invasive distance of tumor cells is not easily affected by this factor. Furthermore the results of this model are not linear, that could show the improvement of the model. In addition, this model has the ability of producing metastasis, as it is shown. In the second model, the interaction between immune cells and cancerous cells are considered. Two-dimensional cellular automata and game theory are used for this purpose. In this model the behavior of cellular automata is determined by the game theory. The rules of cellular automata are determined by game theory table, so each element of the system could make a decision separately.

کلیدواژه‌ها [English]

  • cancer model
  • Cellular automata
  • Game Theory
  • Immune system
  • Extracellular matrix
[1]     Murray, J.D., Mathematical Biology. Springer, New York, 2003.

[2]     Wheng, G., Bhalla, U.S., Iyengar, R., Complexity in biological signaling systems. Science, 1999, 284 92-6.

[3]     McCulloch, A.D., Huber, G., Integrative biological modelling in silico, ’In silico’ simulation of biological processes. Novartis Foundation Symposium 247. Ed Bock G & Goode JA. John Wiley & Sons, London, 2002, 4-19.

[4]     Crampin, E.J., Halstead, M., Hunter, P., Nielsen, P., Noble, D.,Smith, N., Tawhai, M., Computational physiology and Physiome project. Exp. Physiome project. Exp. Physiol, 2004, 89, 1-26.

[5]     Alarc´on, T., Byrne, H.M., Maini, P.K., A multiple scale model for tumor growth. SIAM Multiple Modeling and Simulation, 2004.

[6]     Kasper, Braunwald, Fauci., Principles of Internal Medicine Harrison’s 2005.

[7]     Malcolm R. Alison., The Cancer Handbook, 2004.

[8]     صفا، ح.ر.، ژنتیک، توارث و سرطان، نشر سنبله، 1383.

[9]     مزدیسنا، س.، جعفری، ا.ه.، مدلسازی رشد سرطان در دو بعد با استفاده از اتومانای سلولی بصورت شعاعی و شاخه دار. چهاردهمین کنفرانس مهندسی پزشکی ایران، دانشگاه شاهد، 1386، 285-292.

[10] Jana L Gevertz, Salvatore Torquato., Modeling the effects of vasculature evolution on early brain tumor growth. Journal of Theoretical Biology, 2006, 243, 517– 531.

[11] Hulleman, E., Helin, K., Molecular mechanisms in gliomagenesis. Adv. Cancer Res, 2005, 94, 1–27.

[12] Maher, E.A., Furnari, F.B., Bachoo, R.M., Rowitch, D.H., Louis, D.N., Cavenee, W.K., DePinho, R.A., Malignant glioma: genetics and biology of a grave matter. Genes Dev, 2001, 15, 1311–1333.

[13] Giese, A., Manfred, W., Glioma invasion in the central nervous system. Neurosurgery, 1996, 39 (2), 235–252.

[14] Visted, T., Enger, P.O., Lund-Johansen, M., Bjerkvig, R., Mechanisms of tumor cell invasion and angiogenesis in the central nervous system, Front, Biosci, 2003, 8, 289–304.

[15] Enderling, H., Chaplain, M., Anderson, A., Vaidya, J., A mathematical model of breast cancer development, local treatment and recurrence, J. Theor. Biol, 2007, 264 (2), 245–259.

[16] Sachs, R., Hlatky, L., P., H., Simple ode models of tumor growth and anti-angiogenic or radiation treatment, Math. comput. Model, 2001, 33, 1297– 1305.

[17] Anderson, A., Chaplain, M., Newman, E., Steele, R., Thompson, A., Mathematical modelling of tumour invasion and metastasis, J. Theoret. Med, 2000, 2, 129– 154.

[18] Swanson, K. R., Bridge, C., Murray, J. D., Alvord, E. C., Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion, J Neurol Sci, 2003, 216 (1), 1–10.

[19] von Neuman, John, Theory of self-reproducing automata, edited and completed by Arthur Burks, University of Illinois Press, 1966.

[20] Deutsch, A., Dormann, S., Cellular Automaton Modeling of Biological Pattern Formation, Birkhäuser, Boston, 2005.

[21] Duchting, W., Vogelsaenger, T., Analysis, forecasting and control of three-dimensional tumor growth and treatment. J. Med. Syst, 1984, 8, 461–475.

[22] Gerlee, P., Anderson, A.R.A., An evolutionary hybrid cellular automaton model of solid tumour growth, Journal of Theoretical Biology, 2007, 246, 583–603.

[23] Gerlee, P., Anderson, A.R.A., A hybrid cellular automaton model of clonal evolution in cancer: The emergence of the glycolytic phenotype, Journal of Theoretical Biology, 2008 250, 705–722.

[24] Reis, E.A., Santos, L.B.L, Pinho, S.T.R.; A cellular automata model for avascular solid tumor growth under the effect of therapy, Physica A: Statistical Mechanics and its Applications, 2009, 388, 1303-1314.

[25] Piotrowska, M.J., Angus, S.D., A quantitative cellular automaton model of in vitro multicellular spheroid tumour growth, Journal of Theoretical Biology, Volume 258, Issue 2, 2009, 165-178.

[26] Richard, M., Kirkby, K.J., Webb, R.P., Kirkby, N.F., Cellular automaton model of cell response to targeted radiation. Applied Radiation and Isotopes, 2009, 67, 443-446.

[27] Hatzikirou, H., Brusch, L., Schaller, C., Simon, M., Deutsch, A., Prediction of traveling front behavior in a lattice-gas cellular automaton model for tumor invasion, Comput. Math. Appl, 2010, v59, 2326-2339.

[28] von Neumann, J., Morgenstern, O., Theory of games and economic behavior, Princeton University Press, Princeton, NJ, 1953.

[29] Osborne, M. J., An introduction to Game theory, Oxford University Press, 2004.

[30] M. Merston-Gibbons., An introduction to game-theoretic modelling, 2nd edn, American Mathematical Society, 2000.

[31] Tomlinson, I.P.M., Game–theory models of interactions between tumour cells, Eur. J. Cancer, 1997, 33, 1495– 1500.

[32] Maynard Smith, J., Evolution and the theory of games, Cambridge University Press, Cambridge, 1982.

[33] Hofbauer, J., Sigmund, K., Evolutionary games and population dynamics, Cambridge University Press, Cambridge, 1998.

[34] Mansury, Y., Diggory, M., Deisboeck, T., Evolutionary game theory in an agent-based brain tumor model: exploring the ‘genotype phenotype’ link. J. Theor. Biol, 2006, 238, 146–156.

[35] Hummert, S., Hummert, C., Schröter, A., Hube, B., Schuster, S., Game theoretical modelling of survival strategies of Candida albicans inside macrophages. Journal of Theoretical Biology, 2010, 264, 312-318.

[36] Bellomo, N., Delitala. M., From the mathematical kinetic, and stochastic game theory to modelling mutations, onset, progression and immune competition of cancer cells. Physics of Life Reviews, 2008, Volume 5, Issue 4, 183-206.

[37] Robert A. Gatenby., Thomas L. Vincent., Application of quantitative models from population biology and evolutionary game theory to tumor therapeutic strategies, Molecular Cancer Therapeutic, 2003, 919- 927.

[38] Basanta, D., Hatzikirou, H., Deutsch, A., Studying the emergence of invasiveness in tumours using game theory, European Physical Journal B, 2008, 393-397.

[39] عرب نجفی، م.، تغییرات ژنتیک سرطان، انتشارات جهاد دانشگاهی، 1385.

[40] Kleinsmith, L.J., Kerrigan, D., Spangler, S., National cancer institute: Science behind the news— understanding cancer, 2001.

[41] Weinberg, R.A., How cancer arises, Scientific American, 1996, 275 (3), 62.

[42] Mallet, D.G., de Pillis, L.G., A cellular automata model of tumor–immune system interactions, Journal of Theoretical Biology, 2006, 239, 334–350.

[43] Dunn, G.P., Old, L.J., Schreiber, R.D., The three Es of cancer immunoediting, Annu. Rev. Immunol, 2004, 22, 329–360.

[44] DeClerck, Y.A., Mercurio, A.M., Stack, M.S., Chapman, H.A., Zutter, M.M., Muschel, R.J., Raz, A., Matrisian, L.M., Sloane, B.F., Noel, A., Hendrix, M.J., Coussens, L., Padarathsingh, M., Proteases extracellular matrix and cancer: a workshop of the path b study section, Am. J. Pathol, 2004, 164 (4), 1131–1139.

[45] Folkman, J., Angiogenesis. Annu. Rev. Med, 2006, 57, 1–18.

[46] Alarc´on, T., Byrne, H.M., Maini, P.K., A cellular automaton model for tumour growth in inhomogeneous environment, J. Theor. Biol, 2003, 225, 257-274.

[47] Deutsch, A., Dormann, S., Modelling of avascular tumour growth with a hybrid cellular automaton, In Silico Biol, 2002, 2, 1-14.

[48] Patel, A.A., Gawlinski, E.T., Lemieux, S.K., Gatenby, R.A.: A cellular automaton model of early tumour growth and invasion: The effects of native tissue vascularity and increased anaerobic tumour metabolism. J. theor. Biol. 213 (2001) 315-331.

[49] Stetler-Stevenson WG, Liotta LA, Kleiner DE Jr., Extracellular matrix 6: role of matrix metalloproteinases in tumor invasion and metastasis. The FASEB Journal, Vol 7, 1434-1441.

[50] عرب، م.ر.، احمدی، ح.، سرگلزایی اول، ف.، کریمی، م.، شهریار، م.، شناسایی قندهای انتهایی D-GAL و دی ساکارید Gal/GalNac د کارسینومهای سلول بارال و سنگفرشی پوست. مجله طبیب شرق، 1386، 53-59.

[51] صادقی، م.، همتی، س.، افزایش غلظت پلاسمایی و میزان MMP-9 فعال در بیماران متاستازی سرطان پستان و ارتباط آن با وجود آلل T در پروموتور این ژن. مجله دانشگاه علوم پزشکی مازندران، 1388، 44-51.

[52] Bandini, S., Mauri, G., Serra, R., cellular automata: from a theoretical parallel computational model to its application to complex systems, parallel compute, 2001, 27, 539-553.

[53] Ferreira Jr., S.C., Martins, M.L., Vilela, M.J., Reaction– diffusion model for the growth of avascular tumor, Phys. Rev. E, 2002, 65, 021907.

[54] Grote, J., Susskind, R., Vaupel, P., Oxygen diffusivity in tumor tissue (ds-carcinosarcoma) under temperature conditions within the range of 20–40 degrees C. Pflugers Arch. 1977, 372, 37–42.

[55] Vaskivuo, T.E., Stenback, F., Karhumaa, P., Risteli, J., Dunkel, L., Tapanainen, J.S., Apoptosis and apoptosisrelated proteins in human endometrium, Mol Cell Endocrinol, 2000 165, 75–83.

[56] Folkman, J., Hochberg, M., Self-regulation of growth in three dimension, J. Exp. Med, 1973, 138, 745–753.

[57] Sutherland, R.M., Cell and environment interactions in tumor microregions: the multicell spheroid model, Science, 1988, 240, 177 184.

[58] Gonzalez, R.C., Woods E.R., Eddins, S.L., Digital image processing using MATLAB, 2004, 334-377.