نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 کارشناس ارشد گروه بیوالکتریک، دانشکده مهندسی پزشکی، دانشگاه صنعتی امیرکبیر

2 استاد تمام گروه بیوالکتریک، دانشکده مهندسی پزشکی، دانشگاه صنعتی امیرکبیر

10.22041/ijbme.2011.13160

چکیده

یکی از مسائل کلیدی در نایل شدن به کنترل موفق FES، استفاده از یک مدل مناسب و صحیح از سیستم تحت تحریک الکتریکی است که به‌میزان کافی بیان‌کننده‌ی رفتار آن سیستم باشد. مدل‌های محاسباتی کلاسیک که به‌طور متعارف برای این منظور استفاده می‌شوند، ماهیتی جزء‌نگر دارند؛ بنابراین نمی‌توانند اندرکنش موجود در سیستم بیولوژیک را لحاظ کنند. با توجه به این محدودیت‌ها، اخیرا مدل‌های رفتاری که جعبه سیاه هستند اغلب استفاده می‌شوند. این مدل‌ها روی دینامیک ورودی/ خروجی، که همانا اطلاعات مورد نیاز مدل‌سازی برای طراحی کنترل است تمرکز دارند؛ بدین‌ترتیب به سیستم به عنوان یک کل، که تعاملات بین اجزا را در خود نهفته دارد، پرداخته می‌شود.  تاکنون چنین مدلی برای حرکت مفصل آرنج ارائه نشده است. از این رو در این پژوهش، با استفاده از شبکه‌های عصبی دینامیک، شامل شبکه‌های جلوسو با تاخیر زمانی و بازگشتی، به ارائه و اعتبارسنجیِ یک مدل جعبه سیاه از حرکت مفصل آرنج در صفحه‌ی افق، برای کابردهای کنترل حرکت رساندن دست، در افرادی با ضایعه‌ی نخاعی 6C/‍5Cپرداخته شده است. نهایت انعطاف‌پذیری معماری جلوسو با تاخیر زمانی، در یک ساختار دو لایه با 5 نورون پنهان و استفاده از 25/1 ثانیه از سوابق ورودی، با شاخص عملکرد ضریب همبستگی متقابل %86/89 و نرمالیزه شده‌ی میانگین مربعات خطای % 85/4 رخ داد و به‌عنوان مدلِ برگزیده‌ی این معماری معرفی گردید. بهترین شبکه‌ی بازگشتی با معماری NARX و تعداد سوابق ورودی و خروجی‌ِ برابر نیز، در ساختاری دو لایه با 12 نورون در لایه‌ی پنهان و استفاده از 1/0 ثانیه از سوابق، با شاخص عملکرد همبستگی متقابل %50/92  و نرمالیزه شده‌ی میانگین مربعات خطای % 06/4 رخ داد و به‌عنوان مدلِ برگزیده‌ی این معماری معرفی گردید. مقایسه‌ی بهترین نتایج آموزش با استفاده از شبکه جلوسو از هر دو جنبه‌ی کمی و کیفی به شکل آشکاری بیان‌‌کننده‌ی برتری شبکه‌های بازگشتی در شناسایی سیستم مورد مطالعه است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Black box modeling of Paralyzed Arm for FES-based Reaching Movement Control in SCIPatients

نویسندگان [English]

  • Rahele Shafaei 1
  • Seyed Mohammad Reza Hashemi Golpayegani 2

1 M.Sc, Bioelectric Group, Faculty of Biomedical Engineering, Amirkabir University of Technology

2 Professor, Bioelectric Group, Faculty of Biomedical Engineering, Amirkabir University of Technology

چکیده [English]

One of main the issues in achieving to a successful FES control is using an as much as possible accurate model of the under electrical stimulation system so that it can adequately indicate the system behavior. Classical computational models that are commonly used for this purpose have a reductionism nature; so they cannot consider the interaction existed in biological systems. Considering these restrictions, recently behavioral black box models are mostly used. These models focus on input/output dynamic, which is certainly the necessary modeling information for control design; thus the system is dealt with as a whole, which has hidden the interactions between components inside. Such a model has notbeen presented for elbow angle movement so far. Therefore in this study, we have been to present and verify a black box model of elbow joint movement in the transverse plane, forreaching movement control in people with C5/C6 SCI using dynamic neural networks, including time-delayed feedforward and recurrent networks. Extreme flexibility of time-delayed feedforward architectures was obtainedin a 2 layer structure including 5 hidden neurons and using 1.25s of history of input with performance indexes of 89.89% & 4.85% for cross correlation coefficient and normalized mean square error respectively. The best recurrent network with NARX architecture and equal history of input & output was also occurred in a 2 layer structure having 12 neurons in the hidden layer and using 0.1s of history, with performance indexes of 89.89% & 4.85% for cross correlation coefficient and normalized mean square error respectively. Comparison between best results of training using feedforward and recurrent networks, clearly illustrates both qualitative and quantitative excellency of the latter one in identification of the under-study system.

کلیدواژه‌ها [English]

  • Functional electrical stimulation
  • paralyzed arm musculoskeletal system
  • Reaching movement
  • black box models
  • Neural Networks
[1]     Zhang D, Zhu K, “Modeling biological Motor Control for Human Locomotion with Functional Electrical Stimulation”, Biol. Cybern, Vol.13, No. 3, 2007.
[2]     Riener R, Fuhr T, Paitient-Driven Control of FESSupported Standing up: A Simulation Study, IEEE Transaction on Rehabilitation Engineering. Vol. 6, NO. 2, June 1998.
[3]     Lynch C L, Popovic M R, “Functional Electrical Stimulation”, IEEE Magazine, Control Systems, Vol. 28, 2008.
[4]     Riener R, Quintern J, Schmidt G, Biomechanical Model of the Human Knee Evaluated by Neuromuscular Stimulation, Journal of Biomechanics, Vol. 29, No. 9, pp. 1157-1167, 1996.
[5]     Park H, Durand D M, “Motion Control of Musculoskeletal Systems with Redundancy”, Biol. Cybern, Vol.99, 2008.
[6]     Previdi F, Carpanzano E, “Design of a Gain Scheduling Controller for Knee-Joint Angle Control by Using Functional Electrical Stimulation”, IEEE Trans. Control Syst. Technol, Vol.11, No. 3, 2003.
[7]     Previdi F, “Identification of Black Box Nonlinear Models for Lower Limb Movement Control Using Functional Electrical Stimulation”, Control Engineering Practice, Vol. 10, No.1, 2002.
[8]     Denaii M A ,Palis F, Zeghbib A, “Modeling and Control of Non-linear Systems Using Soft Computing Techniques”, Applied Soft Computing, Vol. 7, 2007.
[9]     Cheng K W E, Cao L, 'Rad A B, Sutanto D, Chow D H K, Tong K Y, “AdaptiveNeural Network Control of FES in Arm Movements and its Application Based onResonant Converter”, Proc. Int. Conf. IEEE on Industiral Technology,Vol. 2, 2002.
[10] Haiming Qi, Dustin J T, Dominique M D, “Neurofuzzy Adaptive Controlling of Selective Stimulation for FES: A Case Study”, IEEE Tran. onRehabil. Eng, Vol. 7, No. 2, June 1999.
[11] Chang G C, Lub J J, Liao G D, Lai J S, Cheng C K, Kuo B L, Kuo T S, “A Neuro-Control System for the Knee Joint Position Control with Quadriceps Stimulation”, IEEE Trans. on Rehabil. Eng, Vol.5, No. 1, 1997.
[12] Kurosawa K, Futami R, Watanabe T, Hoshimiya N, “Joint Angle Control by FES Using a Feedback Error Learning Controller”, IEEE Trans. Neural Syst. Rehabil. Eng, Vol.13, No. 3, 2005.
[13] Biometrics Ltd, “Goniometer and Torsiometer Operating Manual”, 2002, Retrieved 22 Jan. 2011 from: ftp:// ftp.emgsrus.com/manuals/biometrics_goniometer_u g.pdf
[14] Hagan M T, Demuth H B, Beale M, Neural Network Design, Boston: PWS Publishing Company, 1996.
[15] Medsker L R, Jain L C, Recurrent neural networks: design and applications, Boca Raton, FL: CRC Press, 2000.
[16] Hagan M T, Demuth H B, Beale M, “Neural Network ToolboxTM 6 User’s Guide”, MathWorks, 2008, Retrieved 22 Jan. 2011 from:www.mathworks/help/pdf_doc/nnet/nnet.pdf
[17] Waibel A, Hanazawa T, Hilton G, Shikano K, Lang K J, “Phoneme Recognition Using Time-Delay Neural Networks”, IEEE Tran. on Acoustics, Speech, and Signal Processing, Vol. 37, 1989.
[18] Nguyen D, Widrow B, “Improving the Learning Speed of 2-Layer Neural Networks by Choosing Initial Values of the Adaptive Weights”, Proc. Int. Joint Conf. on Neural Networks, Vol. 3, 1990.
[19] Hagan M T, Menhaj M, “Training Feed-Forward Networks with the Marquardt Algorithm,” IEEE Tran. on Neural Networks, Vol. 5, No. 6, 1999.
[20] Dosen S, Popovic D, “Functional Electrical Stimulation for Walking: Rule Based Controller using Accelerometers”, Annual IEEE Student Paper Conf, AISPC , Art. No. 4460550, 2008.
[21] De Jesús O, Horn J M, Hagan M T, “Analysis of Recurrent Network Training and Suggestions for Improvements”, Proc. Int. Joint Conf. on Neural Networks, Washington, DC, 2001