نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 دانشکده مهندسی پزشکی، دانشگاه آزاد اسلامی واحدعلوم وتحقیقات تهران

2 آزمایشگاه تحقیقاتی مکانیک سیالات زیستی، دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران)

3 مرکز تحقیقات جراحی اعصاب کاربردی، بیمارستان شهدای تجریش، دانشگاه علوم پزشکی شهید بهشتی تهران

10.22041/ijbme.2012.13167

چکیده

خواص مکانیکی شریان‌های مغزی، با توجه به ارتباطشان با بیماری‌های این عضو، از ارزش بالینی بالایی برخوردار هستند. در راستای تحقق اهداف پروژه یک دستگاه آزمون کشش دومحوری منحصراً برای این مطالعه و با توجه به ابعاد، حساسیت و ماهیت ناهمگن نمونه‌ها ساخته شد. سپس هشت نمونه از شریان مغزی میانی از جسد انسان‌هایی که مرگشان به علت جراحات یا بیماری عروق مغزی نبود، از اجساد گرفته شدند. نمونه‌ها طی کم‌تر از دوازده ساعت بعد از جدا کردن‌شان از جسد، توسط دستگاه آزمون کششی دومحوری آزموده شدند. منحنی تنش-کشش به‌دست آمده از آزمون‌ها رسم شدند و سپس با مدل ریاضی‌ای که فانگ برای بافت با خاصیت هایپرالاستیک ارائه کرده است، برازش داده شدند. نتایج حاصل از این مطالعه نشان دادند که شریان‌ها به طور محسوسی در راستای محیطی سخت‌تر از جهت محوری هستند. همچنین نتایج نشان داد که استفاده از مدل‌های چند‌پارامتری هایپرالاستیک که دربرگیرنده معادلات رفتاری ماده است، می‌تواند برای توصیف ریاضی رفتار بافت عروق مغزی مفید باشند. خواص به‌دست آمده از  نمونه‌ها در این مقاله یک مرجع مناسب برای مدل‌سازی عددی، تجزیه و تحلیل رفتار عروق مغزی برای حالات سالم و یا بیمار است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Determination of parameters of Fung hyperelastic model for intracranial blood vessel of human using biaxial tensile test

نویسندگان [English]

  • Mohammad Shafigh 1
  • Nasser Fatouraee 2
  • Amir Saeed Seddighi 3

1 Biomedical Engineering Department, Sciences and Research Branch, Islamic Azad University

2 Biological Fluid Mechanics Research Laboratory, Biomechanics Department, Biomedical Engineering Faculty, Amirkabir University of Technoligy

3 Biomedical Engineering Department, Sciences and Research Branch, Islamic Azad University

چکیده [English]

Understanding of mechanical properties of healthy brain arteries is a key element in the development of clinical diagnosis and prevention.For this reason we make biaxial measurements to have appropriate parameters for the underlying material models. To acquire these properties, eight samples were obtained from middle cerebral arteries of human cadavers, whose death were not due to injuries or diseases of cerebral vessels, and tested within twelve hours after resection. The changes of force and deformation until the vessel rupture were recorded. Thereafter, the stress-strain curves were plotted and fitted with a hyperelastic five-parameter Fung model parameters, according to the best fit, were determined. It was found that the arteries were remarkably stiffer in circumferential than in axial direction. It was also found that the use of multi-parameter hyperelastic constitutive models is applicable for mathematical description of behavior of cerebral vessel tissue. The reported material properties can be a proper reference for numerical simulation of cerebral arteries of healthy or diseased intracranial arteries.

کلیدواژه‌ها [English]

  • Cerebral Blood Vessels
  • Anisotropic Tissue
  • Nonlinear Material
  • Plain Stress
  • Fung Model

[1]     Coulson RJ, Cipolla MJ, Vitullo L, Chesler NC, 2004, Mechanical properties of rat middle cerebral arteries with and without myogenic tone, J Biomech Eng, 126

[2]     Holzapfel GA, Gasser TC, Ogden RW, 2000, A new constitutive framework for arterial wall mechanics and a comparative study of material models, J Elasticity 61.

[3]     Gourisankaran V, Sharma MG, 2000, The finite element analysis of stresses in atherosclerotic arteries during balloon angioplasty, Crit Rev Biomed Eng 28.

[4]     Feng Y, Wada S, Tsubota K, Yamaguchi T, 2004, Growth of intracranial aneurysms arising from curved vessels under the influence of elevated wal shear stress a computer simulation study, JSME Int. J. Ser. C, 47.

[5]     Aronow WS, Schwartz KS, Koenigsberg M, 1987,Correlation of serum lipids calcium, and phosphorus, diabetes mellitus and history of systemic hypertension with presence or absence of calcified or thickened aortic cusps or root in elderly patients, Am J Cardiol 59.

[6]     Lindroos M, Kupari M, Heikkila J, Tuilvis R, 1993, Prevalence of aortic valve abnormalities in the elderly: An echocardiography study of a random population sample, Am J Cardiol 21.

[7]     Ourie K, 2001, Peripheral Arterial Disease, Lancet 358.

[8]     Ally C, Reid AJ, 2004, Prendergast PJ, Elastic behavior of porcine coronary artery tissue under uniaxial and equibiaxial tension, Ann Biomed Eng 32.

[9]     Dixon SA, Heikes RG, Vito RP, 2003, Constitutive modeling of porcine coronary arteries using designed experiments, J Biomech Eng 125.

[10] Lu SH, Sacks MS, Chung SY, Gloeckner DC, Pruchnic R,Huard J, Degroat WC, Chancellor MB, 2005,Biaxial mechanical properties of muscle derived cell seeded small intestinal submucosa for bladder wall reconstitution, Biomaterials 26.

[11] Criscione JC, Sacks MS, Hunter WC, 2003, Experimentally tractable psudoelastic constitutive law for biomembranes, J Biomech Eng 125.

[12] Okamoto RJ, Wagenseil JE, Delong WR, Peterson SJ, Kouchoukos NT, 2002, Mechanical properties of dilated human ascending aorta, Ann Biomed Eng, 30.

[13] L'Italien GJ, Chandrasekar NR, Lamuraglia GM, Pevec WC, Dhara S, 1994, Warnock DF, Abbott WM, Biaxial elastic properties of rat arteries in vivo: Influence of vascular wall cells on anisotropy, Am J Physiol, 267.

[14] Holzapfel GA, Eberlein R, Wriggers P, Weizsacker H, 1996, Large strain analysis of soft biological membranes: Formulation and finite element analysis, Comput Meth Prog Bio, 132.

[15] Ogden RW, 1997, Nonlinear elastic deformations, 1st Ed, Dover Publication.

[16] Zulliger MA, Fridez P, Hayashi K, Stergiopulos N, 2004, A strain energy function for arteries accounting for wall composition and structure, J Biomech, 37.

[17] Gasser TC, Schulze-bauer CA, Holzapfel GA, 2002, A three dimensional finite element model for arterial clamping, J Biomech Eng 124.

[18] Humphrey J.D, Strumpf R.K, Yin F.C.P, 1990, Determination of a constitutive relation for passive myocardium: a new functional form, J Biomech Eng, 112.

[19] Humphrey JD, Strumpf RK, Yin FCP, 1990, Determination of a constitutive relation for passive myocardium: II. Parameter estimation, J Biomech Eng, 112.

[20] Stehbens WE, Pathology of the Cerebral Blood Vessels, 1972, St Louis, MO: CV Mosby, 351–470

[21] Busby DE, Burton AC, 1965, The effect of age on the elasticity of the major brain arteries, Can J Appl Physiol Pharmacol, 43

[22] Hu JJ, Baek S, Humphrey JD, 2007, Strain behavior of the passive basilar artery in normotension and hypertension, J Biomech, 40.

[23] Hu JJ, Fossum TW, Miller MW, Xu H, Liu JC, Humphrey JD, 2006, Biomechanics of the porcine basilar artery in hypertension, Ann Biomed Eng, 35, 19-29.

[24] Wicker BK, Hutchens HP, Wu Q, Yeh AT, Humphrey JD, 2008, Normal basilar artery structure and biaxial mechanical behavior, Comput Methods Biomech Biomed Engin , 11, 539–551.

[25] Nagasawa S, Handa H, Naruo Y, Moritake K, Hayashi K, 1982, Experimental cerebral vasospasm arterial wall mechanics and connective tissue composition, Stroke, 13, 595-600.

[26] Monson K, 2001, Mechanical and failure properties of human cerebral blood vessels, Ph.D. Thesis, University of California, Berkeley, USA.

[27] Scott S, Fergosun GG, Roach MR, 1972, Comparison of the elastic properties of human intracranial arteries and aneurysms, Can J Appl Physiol Pharmacol, 50, 328-32.

[28] Seshaiyer P, Hsu FPK, Shah AD, Kyriacou SK, Humphrey JD, 2001, Multiaxial mechanical behavior of human saccular aneurysms, Comput Methods Biomech Biomed Engin, 4, 281-289.

[29] Toth K, 2005, Analysis of the mechanical parameters of human brain aneurysm, Acta Bioeng Biomech, 7, 1-21.

[30] Monson KL, Barbaro NM, Manley GT, 2008, Biaxial response of passive human cerebral arteries, Ann Biomed Eng, 36, 28-41.

[31] Fung YC, Fronek K, Patitucci P, 1979, Pseudoelasticity of arteries and the choice of its mathematical expression, Am J Physiol, 237, 620– 631.

[32] Bellini C, Glassb P, Sitti M, Martino ESD, 2011, Biaxial mechanical modeling of the small intestine, J mechanical behavior of biomedical materials, 4, 1727-1740 .