نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی پزشکی، گروه مهندسی پزشکی، دانشکده برق، دانشگاه خواجه نصیر طوسی

2 استادیار گروه مهندسی پزشکی، دانشکده برق، دانشگاه خواجه نصیر طوسی

10.22041/ijbme.2011.13200

چکیده

در این مقاله از روش المان محدود مرتبه بالا برای بازسازی تصویر درمقطع‌نگاری نوری پخشی (DOT) استفاده شده است. مقطع‌نگاری نوری پخشی یک روش تصویربرداری غیرتهاجمی برای تجسم و نمایش پیوستة بافت و میزان اکسیژن خون در مغز و سینه است. بازسازی تصویر در این روش به یک مسأله معکوس منجر می‌شود که  شامل یک مسأله پیشرو و یک الگوریتم تکراری است. مسأله معکوس در سیستمهای DOT، بدحالت است و دقت حل مسأله معکوس به دقت مسأله پیشرو وابسته است. ارائه مدلی دقیق برای مسأله پیشرو که انتقال نور درون یک بافت با هندسه مشخص را مدلسازی کند و بتواند دقت تفکیک‌پذیری مکانی را نیز افزایش دهد؛ امری ضروری است. درصورت استفاده از روش المان محدود مرتبه یک در مدل‌سازی مسأله پیشرو، دقت مسأله پیشرو با افزایش تعداد المان‌ها افزایش می‌یابد؛ اما بدلیل بدحالتی مسأله معکوس، در افزایش تعداد المان‌ها محدودیت وجود دارد. در این مقاله با استفاده از روش المان محدود مرتبه بالا و بدون افزایش تعداد المان‌ها دقت مسأله پیشرو افزایش یافته است و تصویر در DOT بازسازی شده است. نتایج مسأله پیشرو با جواب تحلیلی مقایسه شده و بازسازی تصویر برای دو نمونة جذب‌کننده ارائه شده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Image reconstruction in Diffuse Optical Tomography by a High-Order Finite Element Method

نویسندگان [English]

  • Maede Hadinia 1
  • Reza Jafari 2

1 Ph.D Student, Biomedical Engineering Group, Electrical Engineering Department, K.N. Toosi University of Technology

2 Assistant Professor, Biomedical Engineering Group, Electrical Engineering Department, K.N. Toosi University of Technology

چکیده [English]

This paper presents image reconstruction in Diffuse Optical Tomography (DOT) using a high-order finite element method. DOT is a non-invasive imaging modality for visualizing and continuously monitoring tissue and blood oxygenation levels in brain and breast. Image reconstruction in DOT leads to an inverse problem consisting of a forward problem and an iterative algorithm. The inverse problem in DOT systems is ill posed and depends on the accuracy of the forward problem. An accurate model, that describes the light transmission in tissue is required and can increase the spatial resolution. Using first order finite elements in the forward problem, numerical results are converged to the exact solution with increasing the number of elements. However, increasing the number of elements may cause a critical issue in the ill-posed inverse problem. This paper focuses on applying the high-order finite element method without increasing the number of elements, and image reconstruction is accomplished. The forward problem results are compared with analytical solutions. Images of absorbers reconstructed using this method are presented.

کلیدواژه‌ها [English]

  • Diffuse optical tomography
  • forward problem
  • high-order finite element
  • Image reconstruction

[1]     Gibson A.P., Hebden J.C., Arridge S.R., Recent advances in diffuse optical imaging; Phys. Med. Biol, 2005; 50: 1-43.

[2]  Schweiger M., Gibson A., Arridge S.R., Computational aspects of diffuse optical tomography; Comput. Sci. Eng., 2003; 5: 33-41.

[3]  Boas D.A., Brooks D.H., Miller E.L., DiMarzio C.A., Kilmer M., Gaudette R.J, Zhang Q., Imaging the body with diffuse optical tomography; IEEE Signal Process. Mag., 2001; 18: 57–75.

[4]  Arridge S.R., Hebden J.C., Optical imaging in medicine: II. Modelling and reconstruction; Phys. Med. Biol, 1997; 42: 841-853.

[5]  Schweiger M., Arridge S.R., Delpy D.T., Application of the finite element method for the forward and inverse models in optical tomography; J. Math. Imag. Vision, 1993; 3: 263–283.

[6]  Sikora J., Zacharopoulos A., Douiri A., Schweiger M., Horesh L., Arridge S.R., Ripoll J., Diffuse photon propagation in multilayered geometries; Phys. Med. Biol., 2006; 51: 497–516.

[7]  Zacharopoulos A.D., Three-dimensional shape-based reconstructions in medical imaging; Ph.D. dissertation, Univ. College London, Bloomsbury,London, U.K., 2004.

[8]  Hielscher A.H., Klose A.D., Scheel A.K., Moa-Anderson B., Backhaus M., Netz U., Beuthan J., Sagittal laser optical tomography for imaging of rheumatoid finger joints;  Phys. Med. Biol., 2004: 1147–1163.

[9]  Pogue B.W., Patterson M.S., Jiang H., Paulsen K.D., Initial assessment of a simple system for frequency domain diffuse optical tomography; Phys. Med. Biol., 1995: 1709–1729.

[10]  Elisee J.P., Gibson A., Arridge S., Combination of Boundary Element Method and Finite Element Method in Diffuse Optical Tomography; IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2010; 57(11): 2737-2745.

[11]  Qin C., Tian J., Yang X., Liu K., Yan G., Feng J., Lv Y., Xu M., Galerkin-based meshless methods for photon transport in the biological tissue; Optics Express, 2008; 16: 20317.

[12]  Jafari Shapoorabadi R., Konrad A., Sinclair A.N., Comparison of three formulations for eddy current and skin effect problems; IEEE Trans. on Magnetics, 2002; 38(2): 617-20.

[13]  Jin J., The finite element method in electromagnetic; Wiley-IEEE Press, 2002.

[14]  Wang L.V., Wu H.I., Biomedical optics principles and imaging; John Wiley & Sons, Inc., 2007.

[15]  Silvester P.P., Ferrari R.L., Finite elements for electrical engineers; Cambridge University Press, 1996.

[16]  Arridge S.R., Schweiger M., Hiraoka M., Delpy D.T. A finite-element approach for modeling photon transport in tissue; Med. Phys. 1993; 20: 299-309.

[17]  Hadinia M., Jafari R., A high-order finite element method for forward problem in diffuse optical tomography; International Symposium on Optomechatronic Technologies (ISOT), 2010.

[18]  Pursiainen S., Hakula H., A high-order finite element method for electrical impedance tomography; Progress in Electromagnetics Research Symposium, Cambridge, USA, March 2006,pp. 1-6.

[19]  Wang L.V., Wu H.I., Biomedical optics principles and imaging; John Wiley & Sons, Inc., 2007.

[20]  Ye J.C., Bouman C.A., Webb K.J., Millane R.P., Nonlinear multigrid algorithms for Bayesian optical diffusion tomography; IEEE Trans. Image Processing, 2001; 10: 909-922.

[21]  Arridge S.R., Optical tomography in medical imaging; Inverse Problems, 1999; 15: 41-93.

[22]  Schweiger M., Arridge S.R., Hiraoka M., Delpy D.T., finite-element method for the propagation of light in scattering media: boundary and source conditions; Med. Phys., 1995; 22: 1779-1792.

[23]  Arridge S.R., Schweiger M., A general framework for iterative reconstruction algorithms in optical tomography, using a finite element method; Computational Radiology and Imaging: Therapy and Diagnosis (IMA Volumes in Mathematics and its Applications 110) ed C Borgers and F Natterer (New York: Springer), 1999: 45–70.