تعیین الگوهای بهینه تحریک در گام برداشتن با واکر و با استفاده از تحریک الکتریکی عملکردی در افراد دچار ضایعه نخاعی

نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری، آزمایشگاه کنترل عصبی- عضلانی، مرکز فناوری عصبی ایران، دانشکدة مهندسی برق، دانشگاه علم و صنعت ایران

2 دانشیار، آزمایشگاه کنترل عصبی- عضلانی، مرکز فناوری عصبی ایران، دانشکدة مهندسی برق، دانشگاه علم و صنعت ایران

10.22041/ijbme.2011.13201

چکیده

بالا بودن سطح مصرف انرژی متابولیک و نیروی زیاد وارد بر دستة واکر از عوامل محدودکننده در گام برداشتن افراد دچار ضایعه نخاعی با کمک تحریک الکتریکی عملکردی، محسوب می‌شود. فرد معلول در هنگام گام برداشتن برای حفظ تعادل و جبران کمبود گشتاورهای ایجاد شده در مفصل‌های پایین‌تنه، نیروی زیادی به دستة واکر وارد می‌کند. در این مقاله یک  مدل گام برداشتن فرد دارای ضایعه نخاعی با واکر در صفحه دو بعدی ارائه شده است. با استفاده از این مدل و کنترل بهینه الگوی تحریک عضلات طوری تعیین شده‌اند که علاوه بر کمینه بودن خطای ردیابی مسیر مرجع مفصل‌های پایین‌تنه، میزان تحریک الکتریکی عضلات پایین‌تنه و همچنین نیروی عکس‌العمل دستة واکر کمینه باشد. گشتاور لازم برای بالاتنه و دست‌ها نیز بر اساس همین تابع هزینه تعیین می‌شوند؛ اما مسیر مرجعی برای مفصل‌های آنها تعریف نشده است. نتایج نشان می‌دهد که نیروهای عکس‌العمل دستة واکر و زمین با مقادیر اندازه‌گیری شده، شباهت زیادی دارد و الگوی تحریک عضلات تولید شده در شبیه‌سازی با الگوهای تحریک گام برداشتن در مطالعات گذشته، مطابقت دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimization of Stimulation Patterns in Paraplegic Walker-Assisted Walking using Functional Electrical Stimulation

نویسندگان [English]

  • Vahab Nekoukar 1
  • Abbas Erfanian Omidvar 2
1 Ph.D Student, Biomedical Engineering Group, Electrical Engineering Department, Iran University of Science and Technology
2 Associate professor, Biomedical Engineering Group, Electrical Engineering Department, Iran University of Science and Technology
چکیده [English]

One major limitation of walker-supported walking using functional electrical stimulation (FES) in paraplegic subjects is the high energy expenditure and the high upper body effort. Paraplegics should exert high amount of hand force to stabilize the body posture and to compensate lack of the sufficient torques at the lower extremity joints. In this paper, we introduce a 2-D musculoskeletal model of walker-assisted FES-supported walking of paraplegics. Using the developed model and an optimal controller, the stimulation patterns are determined such that the tracking errors of lower joint reference trajectories are minimized and the muscle activations and the handle reaction force (HRF) are reduced. Outputs of the optimal controller are stimulation patterns of the lower body muscles and torque acting on the upper body joints. The results show that the HRF and ground reaction force (GRF) generated by simulation are in agreement with the measured HRF and GRF. Moreover, the results indicate that the simulation-generated stimulation patterns of lower body muscles are in consist with the stimulation patterns reported in the literatures.

کلیدواژه‌ها [English]

  • Functional electrical stimulation
  • optimal control
  • walking
  • paraplegic
  • model

[1].  Yamaguchi G.T., Zajac F.E., Restoring unassisted natural gait to paraplegics via functional neuromuscular stimulation: a computer stimulation; IEEE Transactions on Biomedical Engineering, 1990; 37(9): 886-902.

[2].  Thelen D.G., Anderson F.C., Using computed muscle control to generate forward dynamic simulations of human walking from experimental data; Journal of Biomechanics, 2006; 39: 1107-1115.

[3].  Ren L., Jones R.K., Howard D., Predictive modelling of human walking over a complete gait cycle; Journal of Biomechanics, 2006; 40: 1567-1574.

[4].  Popović D.B., Stein R.B., Oguztoreli M.N., Lebiedowska M. Jonic S., Optimal control of walking with functional electrical stimulation: a computer stimulation study; IEEE Transactions on Rehabilitation Engineering, 1999; 7(1): 69-79.

[5].  Popović, D.B. Control of walking in disabled humans; Journal of Automatic Control, University of Belgrade, 2003; 13: 5-33.

[6].  Došen S., Popović D.B., Moving-window dynamic optimization: design of stimulation profiles for walking; IEEE Trans. Biomed. Eng., 2009; 56(5): 1298-1309.

[7].  Anderson F.C., Pandy M.G., Dynamic optimization of human walking; Transactions of the ASME, 2001; 123: 381-390.

[8].  Popović, D.B., Tomović R., Schwirtlich L., Hybrid assistive system-the motor neuroprosthesis; IEEE Trans. Biomed. Eng., 1989; 36: 729–737.

[9].  Spadone R., Merati G., Bertocchi E., and et al, Energy consumption of locomotion with orthosis versus Parastep-assisted gait: a single case study; Spinal Cord, 2003; 71: 97–104.

[10].Eberhart R.C., Hu X., Human tremor analysis using particle swarm optimization; Proc. Cong. Evolutionary Computation, 1999: 1927– 1930.

[11].Winter D.A., Biomechanics and Motor Control of Human Movement. 3rd Ed., NY: Wiley, 2004.

[12].Anderson F.C., Pandy M.G., A dynamic optimization solutionfor vertical jumping in three dimensions; Comput. Meth. Biomech. Biomed. Eng., 1999; 2: 201–231.

[13].Leva P., Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters; J. Biomech., 1996; 29: 1223-1230.

[14].Winters J.M., Hill-based Muscle Models: A Systems Engineering Perspective. In Multiple Muscle Systems-Biomechanics and Movement Organization, NY: Springer-Verlag, 1990.

[15].Zahalak G.I., an Overview of Muscle Modeling. In Neural Prostheses: Replacing Function after Disease or Disability, NY: OxfordUniversity Press, 1992.