کاهش آرتیفکت حرکتی ریه در تصاویر PET با استفاده از الگوی حرکتی بدست آمده از مدل موجک

نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، پرتوپزشکی، دانشکده مهندسی پرتوپزشکی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات

2 دانشجوی کارشناسی ارشد، مهندسی مکاترونیک، دانشکده مهندسی کامپیوتر، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات

3 دانشیار، پرتوپزشکی، دانشکده مهندسی پرتوپزشکی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات

10.22041/ijbme.2013.13205

چکیده

پیشرفت‌های اخیر در سیستم‌های سه‌بعدی PETموجب شده قدرت تفکیک مکانی به مقدار 2-5 میلی‌متری پهنای کامل نصف ماکسیمم (FWHM)برسد. با چنین رشدی در قدرت تفکیک فضایی حتی مقدار کمی از حرکت در تصویربرداری PETمنبعی مهم برای کاهش قدرت تفکیک به شمار می‌رود.در این پژوهش در سطحی وسیع به بازنگری و بحث الگوهای اصلاحی پیشرفته برای نمونه‌هایی از حرکات ناخواسته بیماران، حرکت بواسطه چرخه‌های قلبی و حرکت بواسطه چرخه‌های تنفسی پرداخته شده است. در ادامه با استفاده از NCATدو فانتوم زن و مرد طراحی شد. هدف از طراحی دو فانتوم مرد و زن مقایسه نتایج به دست آمده برای هر یک از آنها با توجه به ساختار متفاوتشان بود. سپس با واسطه نرم‌افزار Sim SETتصاویر PETبا در نظر گرفتن حرکت قفسه سینه و بدون در نظر گرفتن آن، برای چرخه تنفسی 4 ، 5 و6 ثانیه و برای هر دو فانتوم به طور جداگانه به دست آورده شد و در انتها مدل حرکتی بر مبنای چرخه تنفسی 5 ثانیه، با تبدیل موجک استخراج شد که حرکت ناشی از چرخه تنفسی و در نتیجه آرتیفکت ایجاد شده در تصویر را می‌تواند به نوعی اصلاح کند. نتایج حاصل از این پژوهش نشان می‌دهد در فریم‌های زمانی ابتدایی و انتهایی چرخه تنفسی، با توجه به اختلاف بسیار ناچیز بین تصاویر بدون حرکت و تصاویر دارای حرکت تنفسی، می‌رساند که مدل نتیجه بهتری را در‌بر‌نداشته است؛ حال آنکه در فریم‌های زمانی دیگر مدل توانسته است تخمین مناسبی از حرکت را ارائه کند. تصاویر حاصل از مدل که منجر به حذف حرکت تنفسی شده، توانسته است در مقایسه با تصاویر دارای حرکت تنفسی شباهت بیشتری را چه از نظر مجموعه مربعات خطا و چه از نظر ضرایب همبستگی به تصویر بدون حرکت ارائه کند. در مقایسه با سایر روش‌های موجود می‌توان مشاهده کرد که مدل یاد شده علاوه بر ارائه تخمینی مناسب برای حرکت، از خطاهای ناشی از الصاق نشانگر و نیز به کار بردن سخت افزارهای پایش مبری است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Respiratory Motion Compensation in PET Based on Wavelet Transform Model

نویسندگان [English]

  • Nikta Jalayer 1
  • Majid Bagheri 2
  • Majid Pouladian 3
1 M.Sc., Medical Radiation Engineering Department,Sceince and Research Branch, Islamic Azad University
2 Sc., Mechatronics Department, Sceince and Research Branch, Islamic Azad University,Training Manager at MARCOPACS
3 Associate Professor, Medical Radiation Engineering Department, Facaulty of Medical Radiation Engineering, Sceince and Research Branch, Islamic Azad University
چکیده [English]

Recent developments in three-dimensional (3D) PET systems have enabled the spatial resolution to reach the 2- to 5-mm full-width-at-half-maximum (FWHM) range. With such improvements in spatial resolution, even small amounts of motion during PET imaging become a significant source of resolution degradation. In other words, increased spending on new-generation scanners can be fully justified only when appropriate motion correction methods are considered, to achieve the true resolution of the scanner. Motion correction methods developed for single photon emission CT (SPECT) are not necessarily applicable to PET because they may rely on the time-dependence of projections in SPECT (due to a rotating head or heads), which is not the case in PET. Nevertheless, a number of other methods implemented in SPECT are equally applicable to PET. In this work has been broadly categorized into the review and discussion of advanced correction methods for the cases of unwanted patient motion, motion due to cardiac cycles, and motion due to respiratory cycles. After reviewing some current methods, the model is introduced which was developed with the help of NCAT phantom and Sim SET. Two phantoms were extracted, male and female, from NCAT to see the differences between the results with the changes in the anatomy of these two phantoms. Then PET images were produced using Sim SET for all the phantoms available (with respiratory motion and without respiratory motion and for respiratory cycles of 4, 5 and 6 seconds for both male and female phantoms). The new model is introduced which is designed based on the respiratory cycle 5 seconds, using wavelet transforms. This model can track and compensate motion due to respiration. The results show that for the first frame and the last one because of very smooth and slight motions the images with motion are not that different from the images without motion, so the proposed model is not responding better than the images with motion. However, for the rest of the frames the model provides better images compare to the images with motion. Comparing to other methods, this model not only provides a good estimation for motion but also it doesn’t include the errors caused by markers and monitoring systems.

کلیدواژه‌ها [English]

  • Motion Artifact
  • Respiratory Motion Model
  • Wavelet Tramnsform
  • Image reconstruction

[1]     Osman MM, Cohade C, Nakamoto Y, Wahl RL. Respiratory motion artifacts on PET emission images obtained using CT attenuation correction on PET-CT. Eur J Nucl Med 44(2):240–243, Feb 2003.

[2]     Cohade C, Osman M, Marshall LN, Wahl RL. PET-CT: accuracy of PET and CT spatial registration of lung lesions. Eur J Nucl Med Mol Imaging. 30(5):721–726, May 2003.

[3]     Von Schulthess GK. Normal PET and PET/CT body scans: imaging pitfalls and artifacts. In: von-Schulthess GK, ed. Clinical Molecular Anatomic Imaging: PET, PET/CT and SPECT/CT. Baltimore, MD: Lippincott, Williams & Wilkins; 2002:252-270.

[4]     Mauricio Reyes1, Gr´egoire Malandain, Pierre Malick Koulibaly, Respiratory Motion Correction in Emission Tomography Image Reconstruction. J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 369–376, 2005.

[5]     Ganzalo P, Jesus M. A waveletbased image fusion tutorial. Pattern Recogn 2004; 37: 18551872.

[6]     Graps A. An introduction to wavelets. Presented at IEEE Computational Science and Engineering, USA, 1995.

[7]     Segars WP, Lalush DS, Tsui BMW. Modeling Respiratory Mechanics in the MCAT and Spline-Based MCAT Phantoms. IEEE Trans Nucl Sci. 2001; 48(1): 89-97.

[8]     http://depts.washington.edu/simset/

[9]     J. Ehrhardt, R. Werner, A. Schmidt–Richberg, B. Schulz and H. Handels, Generation of a Mean Motion Model of the Lung Using 4D-CT Image Data, Eurographics Workshop on Visual Computing for Biomedicine (2008)

[10] Rene Werner, Jan Ehrhardt, Rainer Schmidt, and Heinz Handels,  Modeling Respiratory Lung Motion – a Biophysical Approach using Finite Element Methods, Medical Imaging 2008: Physiology, Function, and Structure from Medical Images, edited by Xiaoping P. Hu, Anne V. Clough, Proc. of SPIE Vol. 6916, 69160N, (2008),

[11] Eom J, De S, Xu X G, Shi CY, Vines D. Physics-based respiration modeling for radiation treatment using patient-specific PV curve. AAPM 2009 51th Annual meeting; July 26~30, 2009, Anaheim, CA.

[12] Tobias Kindler, Cristian Lorenz, Jörn Ostermann, Respiratory Motion Modeling and Estimation, First International Workshop on Pulmonary Image Analysis (2008)