تحلیل غیرخطی پایداری دینامیکی کمر در حین حرکات تکراری خم و راست‌ شدن تنه در دو راستای قرینه و غیرقرینه

نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه بیومکانیک، دانشکده مکانیک، دانشگاه صنعتی شریف

2 استادیار، گروه بیومکانیک، دانشکده مکانیک، دانشگاه صنعتی شریف

3 استادیار، مرکز تحقیقات توان‌بخشی و دانشکده توان‌بخشی ، دانشگاه علوم پزشکی ایران

4 استادیار، گروه اورگونومی، دانشگاه علوم بهزیستی و توانبخشی

5 استاد مدعو، گروه بیومکانیک، دانشکده مکانیک، دانشگاه صنعتی شریف

10.22041/ijbme.2014.13281

چکیده

نقش پایداری در جلوگیری از افتادن در حین انجام فعالیت‌‌های روزمره و شغلی بسیار با اهمیت است. پارامترهای کنترلی مانند راستای حرکت و اعمال بار خارجی می‌‌توانند پایداری حرکت را تحت تأثیر قرار دهند. هدف مطالعه حاضر ارزیابی تأثیر عوامل کنترلی ذکر شده بر پایداری ستون‌ فقرات است. داده‌‌های مورد بررسی، سری زمانی حاصل از زوایای دوران کمر مربوط به 19 فرد سالم هستند. هرکدام از افراد حرکت خم و راست شدن را در دو حالت باربرداری قرینه (در صفحه ساجیتال) و غیرقرینه (بین صفحه ساجیتال و صفحه عرضی) و در دو وضعیت بدون بار و با بار 8 کیلوگرمی انجام داده‌‌اند. برای ارزیابی پایداری دینامیک، متناسب با انجام حرکات تکراری، از روش غیرخطی نمای لیاپانوف استفاده شده ‌است. نتایج تجزیه واریانس نشان داد اختلاف معنی‌‌داری (0.016=p) بین دو حالت قرینه و غیرقرینه وجود دارد. مقایسه میانگین حاکی از ناپایدارتر بودن حرکت در راستای قرینه در مقایسه با راستای غیرقرینه بود. برای تفسیر این نتیجه می‌‌توان به عواملی مانند فعالیت بیشتر عضلات مایل داخلی و خارجی و وجود قیود مکانیکیبیشتر در ستون‌ فقرات در طول حرکت غیرقرینه اشاره کرد.نتایج تجزیه واریانس همچنین نشان داد که اعمال بار 8 کیلوگرمی و اثر متقابل راستا در بار تأثیر معناداری بر پایداری دینامیک موضعی نداشته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Nonlinear analysis of dynamic lumbar stability during repetitive trunk flexion extension at symmetric and asymmetric directions

نویسندگان [English]

  • Samane Moeini Sedeh 1
  • Navid Arjmand 2
  • Mohammad Ali Sanjari 3
  • Hamid Reza Mokhtarinia 4
  • Morteza Asgari 1
  • Mohammad Parnianpour 5
1 M.Sc., Mechanical Engineering Department, Facualty of Biomechanics, Sharif university of Technology
2 Asistant Professor, Mechanical Engineering Department, Facualty of Biomechanics, Sharif university of Technology
3 Asistant Professor, Department of Rehabiliation Basic Sciences, Faculty of Rehabiliation, Iran University of Medical Sciences
4 Asistant Professor, Department of Ergonomics, University of Social Welfare and Rehabilitation Sciences
5 Adjunct Professer, Mechanical Engineering Department, Facualty of Biomechanics, Sharif university of Technology
چکیده [English]

Stability is important to prevent falling during occupational and daily living activities. Control parameters such as direction of motion and external load can affect stability pattern. The purpose of this paper was to evaluate the effect of the mentioned control parameters on stability. Time series of lumbar rotation angle in 19 healthy subjects were investigated. Each subject performed spine flexionextension in two different directions of symmetric (sagittal plane) and asymmetric (between sagittal and transverse planes), with two loading cases of 8 Kg weight and load free. To evaluate dynamic stability of repetitive movement, a nonlinear method of largest Lyapunov exponent has been used. After calculating maximum Lyapunov exponent from each of the experimental cases, results of analysis of variance showed a significant difference between symmetric and asymmetric directions (p=0.016). To interpret this result we can suggest higher recruitment of the internal and external oblique muscle groups and higher mechanical constraints in spine during asymmetric tasks. Mean comparison showed that movement in symmetric direction has more instability than the asymmetric case. Moreover, presence of load and interaction between direction and load did not significantly affect local dynamic stability.

کلیدواژه‌ها [English]

  • Direction of motion
  • External load
  • Dynamic stability
  • Repetitive movements
  • largest Lyapunov exponent

[1]     K. Wong, T. Thomas, Y. Raymond and W. Lee. "Effects of low back pain on the relationship between the movements of the lumbar spine and hip." Human Movement Science, 2004 , Vol. 23, No. 1, pp. 21-34.

[2]     A. Maduri, B.L. Pearson, and S.E. Wilson. "Lumbar–pelvic range and coordination during lifting tasks." Journal of Electromyography and Kinesiology, 2008 , Vol. 18, No. 5, pp. 807-814.

[3]     T. Singh, and M. Koh. "Effects of backpack load position on spatiotemporal parameters and trunk forward lean." Gait & Posture,  2009, Vol. 29, No. 1, pp. 49-53.

[4]     Fathallah, Fadi A., William S. Marras, and Mohamad Parnianpour. "An assessment of complex spinal loads during dynamic lifting tasks." Spine, 1998 , Vol. 23 , No. 6, pp.  706-716.

[5]     C. Larivière, D. Gagnon, and P. Loisel. "A biomechanical comparison of lifting techniques between subjects with and without chronic low back pain during freestyle lifting and lowering tasks." Clinical Biomechanics, 2002 ,  Vol. 17, No. 2, pp. 89-98.

[6]     Panjabi, Manohar M. "The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement." Journal of spinal disorders & techniques, 1992, Vol. 5, No..4 , pp.  383-389.

[7]     K.P. Granata, and S.A. England. "Stability of dynamic trunk movement." Spine,  2008, Vol. 31, No. 10, pp. E271.

[8]     N. Stergiou, and L.M. Decker. "Human movement variability, nonlinear dynamics, and pathology: is there a connection?." Human movement science,  2011, Vol. 30. No.5, pp. 869-888.

[9]   H.R. Mokhtari Nia. “The effect of Velocity, Movement asymmetry and External load on Dynamic Postural Stability and Intersegmental Coordination In Nonspecific Low back Pain and Healthy subjects.” PhD Thesis, Tarbiat Modares University, 2011.

[10] E. Ageberg, K. Bennell, M. Hunt, M. Simic, E. Roos, and M. Creaby. "Validity and inter-rater reliability of medio-lateral knee motion observed during a single-limb mini squat." BMC Musculoskeletal Disorders,  2010, Vol. 11, No. 1, pp. 265.

[11]            J.H. Argyris, G. Faust, and M. Haase. An Exploration of Chaos: An Introduction for Natural Scientists and Engineers. Netherlands: North-Holland, 1994, pp. 50-52.

[12] H. Kantz, and T. Schreiber.  “Nonlinear time series analysis.” Cambridge University Press, 2003, Vol. 7.

[13] A.M. Fraser, and H.L. Swinney. "Independent coordinates for strange attractors from mutual information." Physical Review A,  1986, Vol. 33, No. 2, pp. 1134.

[14] M.B. Kennel, R. Brown, and H.D.I. Abarbanel. "Determining embedding dimension for phase-space reconstruction using a geometrical construction." Physical review A,  1992, Vol. 45, No. 6 pp. 3403.

[15] M.T. Rosenstein, J. J. Collins, and C.J. De Luca. "A practical method for calculating largest Lyapunov exponents from small data sets."Physica D: Nonlinear Phenomena,  1993, Vol. 65, No .1, pp. 117-134.

[16] R.J. Peterka, "Simplifying the complexities of maintaining balance." Engineering in Medicine and Biology Magazine, IEEE,  2003, Vol. 22, No. 2, pp. 63-68.

[17] S.A. Lavender, Y.H. Tsuang, A. Hafezi, G.B. Anderson, D.B. Chaffin, and R.E. Hughes. “Coactivation of the trunk muscles during asymmetric loading of the torso." Human Factors: The Journal of the Human Factors and Ergonomics Society,  1992, Vol. 34, No. 2, pp. 239-247.

[18] K.P. Granata, and W.S. Marras. "An EMG-assisted model of loads on the lumbar spine during asymmetric trunk extensions." Journal of Biomechanics, 1993, Vol.26, No. 12, pp. 1429-1438.

[19] R.B. Graham. and S.H. Brown. "A direct comparison of spine rotational stiffness and dynamic spine stability during repetitive lifting tasks."Journal of biomechanics, 2012, Vol.  45, No. 9, pp. 1593-1600.

[20] R.B. Graham. E.M. Sadler. J.M. Stevenson. "Local dynamic stability of trunk movements during the repetitive lifting of loads." Human movement science, 2012, Vol. 31, No. 3, pp. 592-603.

[21] I.A.F. Stokes, M. Gardner-Morse, S.M. Henry, and G.J. Badger. "Decrease in trunk muscular response to perturbation with preactivation of lumbar spinal musculature." Spine,  2000, Vol. 25, No. 15, pp. 1957-1964.