نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 کارشناس ارشد، دانشکده مهندسی پزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی

2 مربی، مرکز تحقیقات نانوتکنولوژی پزشکی و مهندسی بافت، دانشگاه علوم پزشکی شهید بهشتی

3 دانشیار، دانشکده مهندسی پزشکی، آزمایشگاه تحقیقاتی مکانیک سیالات بیولوژیکی، دانشگاه صنعتی امیرکبیر

10.22041/ijbme.2010.13337

چکیده

در این مطالعه سازوکاری برای کنترل مسیر حرکت جت نانوفیبرهای تولید شده در روش الکتروریسی به کمک میدان مغناطیسی ارائه و مدلسازی می گردد. در ابتدا مسیر جت با کمک تعدادی قطعه ویسکوالاستیک مدلسازی شد. با در نظر گرفتن نیروهای حاکم بر این سیستم و معادله تعادل اندازه حرکت و ویسکوالاستیک ماکسول مسیر حرکت سیال با کمک نرم افزار MATLAB با روش عددی رونگ کوتا مدل شد. پس از اطمینان از صحت عملکرد سیستم، رفتار آن در حضور میدان مغناطیسی در راستای حرکت جت مورد ارزیابی قرار گرفت. این میدان نیروی یکسانی در هر نقطه بر جت وارد می کند. با افزایش شدت میدان مغناطیسی عملا شعاع قاعده مخروطی شکل حرکت کاهش یافت. بر اساس این پژوهش مشخص شد که با داشتن سازوکار مناسب برای اعمال میدان مغناطیسی عملا می توان مسیر حرکت و راستای الیاف را تحت کنترل در آورد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Modeling of Magnetic Field Effect on Nanofiber Jet Path in Electrospinning for Fabricating Optimum Tissue Engineering Scaffolds

نویسندگان [English]

  • Fateme Shamsi 1
  • Mohsen Janmaleki 2
  • Nasser Fatouraee 3

1 M.Sc Graduated, BioMedical Engineering School, Research and Sciences Branch, Islamic Azad University

2 Research Scientist, Nano Medicine & Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences

3 Associate Professor, Laboratory of Fluid Mechanics, BioMedical Engineering School, Amir Kabir University of Technology

چکیده [English]

In this study a mechanism was modeled to control the jet path of nanofibers produced by electrospinning through inducing a magnetic field over the jet path. Firstly, a model was developed for the jet path in which the fibers composed of a series of viscoelastic segments. Considering the mass and momentum conservation and maxwellian model of stretching viscoelastic segments using three equations governing the jet dynamics of the jet model in electrospinning, a program was developed in MATLAB with Runge–Kutta method. After ensuring the accuracy of the model, its behavior was evaluated in the presence of a magnetic field. The field induced a uniform force distribution over the jet. As the intensity of the magnetic field increased; the instability and bending radius of the jet reduced. The results of the research showed that utilizing a suitable mechanism for applying magnetic field can provide help in controlling the jet path and alignment of the nanofibers.

کلیدواژه‌ها [English]

  • Electrospinning
  • Scaffold
  • Tissue engineering
  • Magnetic field
  • Modeling
[1]     Nukavarapu S.P., Kumbar S.G., Merrell J.G., and Laurencin C.T, Laurencin C.T, Editor, Electrospun Polymeric Nanofiber Scaffolds for Tissue Regeneration, in Nanotechnology and Tissue Engineering, The Scaffold, CRC Press. 2008: 199-219.
[2]     Murray M.A., Fessler L.I., and Palka J., Changing distributions of extracellular matrix components during early wing morphogenesis in Drosophila. Dev. Biol., 1995; 168: 150–165.
[3]     Albrecht, D.R., Underhill G.H., Wassermann T.B., Sah R.L., and Bhatia S.N., Probing the role of multicellular organization in three-dimensional microenvironments, Nat Methods, 2006; 3 (5): 369–375.
[4]     Mwenifumbo S., and Stevens M.M., ECM Interactions with Cells from the Macro to Nanoscale, Gonsalves, C.H., Laurencin C.T., and Nair L.K., Editor. Biomedical Nanostructures, John Wiley & Sons, Inc: 2007: 225-260.
[5]     Masuko T., Iwasaki N., Yamane S., Funakoshi T., Majima T., Minami A., Chitosan-RGDSGGC conjugate as a scaffold material for musculoskeletal tissue engineering, Biomaterials, 2005; 26: 5339–5347.
[6]     Bettinger C.J., Borenstein J.T., and Langer R., Microfabrication Techniques in Scaffold Development, in Nanotechnology and Tissue Engineering, The Scaffold, L.S.N. Laurencin C.T., Editor. CRC Press, 2008: 88-113.
[7]     Dalby M.J., Riehle M.O., Yarwood S.J., Wilkinson C., and Curtis A., Nucleus alignment and cell signaling in fibroblasts: Response to a microgrooved topography. Exp Cell Res, 2003; 284: 274–282.
[8]     Dalby M.J., Increasing fibroblast response to materials using nanotopography: morphological and genetic measurements of cell response to 13-nm-high polymer demixed islands, Exp Cell Res, 2002; 276: 1-9.
[9]     Li D. and Xia Y., Electrospinning of Nanofibers; Reinventing the Wheel? Adv.Mater. 2004; 14: 1151- 1170.
[10] Ramakishna S., Fujihara K., Teo W.E., Lim T.C., Ma Z., An Introduction of Electrospinning and Nanofibers., World Scientific Publishing Co., 2005.
[11] Thompson C.J., Chase G.G., Yarin A.L., Reneker D.H., Effect of parameters on nanofiber diameter determined from electrospinning model, Journal of Polymer, 2007; 48: 6913-6929.
[12] Stetler M., Brenn G., Yarin A.L., Singh R.P., Durst F., Validation and application of a novel elongational device for polymer solutions, Journal of Rheology, 2000; 44 (3): 595-616.
[13] Stetler M., Brenn G., Yarin A.L., Singh R.P., Durst F., Investigation of the elongational behavior of polymer solutions by means of an elongational rheometer, Journal of Rheology, 2002; 46 (2): 507-527.
[14] Yarin A., Koombhongse S., Reneker D., Taylor cone and jetting from liquid droplets in electrospinning of nanofibers, journal of applied physics, 2001; 90 (9): 4836-4846.
[15] Reneker D., Yarin A.L., Fong H. and Koombhongse S., Bending Instability of electrically charged liquid jets of polymer solutions in electrospinning, journal of applied physics, 2000; 87 (9): 4531-4547.