نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 کارشناس ارشد، گروه بیوالکتریک، دانشکده مهندسی برق، دانشگاه صنعتی شریف

2 استادیار، گروه مهندسی کامپیوتر، دانشگاه قم

3 استادیار، گروه بیوالکتریک، دانشکده مهندسی برق، دانشگاه صنعتی شریف

4 استادیار، دانشکده فیزیک، دانشگاه رایرسون

10.22041/ijbme.2009.13409

چکیده

افزایش روزافزون کاربردهای تشخیصی و درمانی اولتراسوند غیرخطی در زمینه پزشکی و بیولوژی سبب ترغیب پژوهشگران در دستیابی به مدلسازی دقیق و شبیه سازی کارامد از رژیم اولتراسوند غیرخطی شده است. در بین مدل های غیرخطی برای مدلسازی انتشار پرتوی اولتراسوند دارای پراش در سیال غیر ایدئال با تلفات، معادله موج غیرخطی KZK بیشترین توجه و استقبال را پیدا کرده است. چند الگوریتم عددی برای حل معادله KZK تدوین شده است. در کل، تمامی این الگوریتم ها به سه دسته قابل تقسیم هستند: حوزه فرکانس، حوزه زمان و ترکیب حوزه زمان-فرکانس. وجود تقریب پارابولیک در ذات معادله KZK به محدودیت صحت بازه حل جمله پراش، به ویژه در نزدیکی منبع و ناحیه دور از محور انتشار منجر می شود. در این مقاله، تعمیمی جدید برای حل عددی جمله پراش معادله KZK در حوزه زمان ارائه می شود. این الگوریتم، عملگر لاپلاسین را با بهره گیری از روش های 5-نقطه بازگشتی ضمنی تفاضل محدود (IBFD 5-نقطه) و 5-نقطه کرانک-نیکلسون تفاضل محدود (CNFD 5-نقطه) محاسبه می کند. این امر امکان گسسته سازی کم حجم تر را برای عملگر لاپلاسین فراهم می کند، بدون اینکه از دقت جواب عددی کاسته شود. مقایسه نتایج الگوریتم پیشنهادی با الگوریتم منتشر شده برای منبع صوت متقارن دایروی، نشان دهنده دقت محاسباتی و کارایی عددی این روش است. به دنبال آن، نتایج انتشار موج اولتراسوند غیرخطی با منبع مربعی برای نشان دادن توانمندی روش ارائه شده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Generalized Time-Domain Solution To The Kzk Nonlinear Acoustic Wave Equation

نویسندگان [English]

  • Nojtaba Hajihasani 1
  • Yaghoub Farjami 2
  • Bijan Vosoughi Vahdat 3
  • Jahangir Tavakoli 4

1 M.Sc Graduated, School of Electrical Engineering, Sharif University of Technology

2 Assistant Professor, School of Computer Engineering, University of Qom

3 Assistance Professor, School of Electrical Engineering, Sharif University of Technology

4 Assistant Professor, School of Physics, Ryerson University

چکیده [English]

Increasing number of diagnostic and therapeutic applications of finite amplitude ultrasound in medicine and biology has motivated researchers toward more accurate modeling and more efficient simulation of nonlinear ultrasound regime. One of the most widely used nonlinear models for propagation of 3D diffractive sound beams in dissipative media is the KZK (Khokhlov, Kuznetsov, Zabolotskaya) parabolic nonlinear wave equation. Various numerical algorithms have been developed to solve the KZK equation. Generally, these algorithms fall into one of the three main categories: frequency domain, time domain and combined time-frequency domain. The intrinsic parabolic approximation in the KZK equation imposes limiting accuracy in the solution to the diffraction term of the KZK equation particularly for field points close to the source or in far off-axis region. In this work we developed a novel generalized time domain numerical algorithm to solve the diffraction term of the KZK equation. The algorithm solves the Laplacian operator of the KZK equation in the 3D Cartesian coordinates using novel 5-point Implicit Backward Finite Difference (IBFD) and 5-point Crank-Nicolson Finite Difference (CNFD) techniques. This leads to a more uniform discretization of the Laplacian operator which in turn results in a more accurate solution to the diffraction term in the KZK equation. Comparison between results obtained with the new algorithm and the previously-published data for rectangular ultrasound sources is presented.

کلیدواژه‌ها [English]

  • Nonlinear Acoustic
  • Kzk Wave Equation
  • Diffraction
  • Finite difference method
  • Sparse Solver

[1]     Li Y., and Zagzebski J. A., Computer model for harmonic ultrasound Imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2000; 47: 1000–1013.

[2]     Huber S., Steinbach R., Sommer O., Zuna I., Czembirek H., and Delorme S., Contrast-enhanced power Doppler harmonic imaging-influence on visualization of renal vasculature. Ultrasound Med Biol., 2000; 26: 1109-15.

[3]     Rassweiler J.J., Renner C., Chaussy C., and Thuroff S., Treatment of renal stones by extracorporeal shockwave lithotripsy - An update. European Urology, 2001; 39: 187-199.

[4]     Averkiou M.A., and Cleveland R.O., Modeling of an electrohydraulic lithotripter with the KZK. J. Acoust. Soc. Am., 1999; 106: 102–112.

[5]     Tavakkoli J., Birer A., Arefiev A., Prat F., Chapelon J.Y., and Cathignol D., A piezocomposite shock-wave generator with electronic focusing capability: application for producing cavitation-induced lesions in rabbit liver, Ultrasound Med. Biol., 1997: 23:107-115.

[6]     Roberts W.W., Hall T.L., Ives K., Wolf J.S., Fowlkes J.B., and Cain C.A., Pulsed cavitational ultrasound: a noninvasive technology for controlled tissue ablation (Histotripsy) in the rabbit kidney, J. Urology, 2006; 175: 734-738.

[7]     ter Haar G., Therapeutic applications of ultrasound. Progress in Biophysics and Molecular Biology, 2007; 93: 111-129.

[8]     Vaezy S., Martin R., and Crum L.A., High Intensity Focused Ultrasound: A Method of Hemostasis, Echocardiography a Journal of Cardiovascular Ultrasound & Allied Techniques, 2001; 18:309-315.

[9]     Coleman D.J., Lizzi F.L., Driller J., and Rosado A.L., Burgess S.E.P., Torpey J.H., Smith M.E., Silverman R.H., Yobolonski M.E., Chang S., Rondeau MJ., Therapeutic ultrasound in the treatment of glaucumo II. Clinical applications, Opthalmology, 1985; 92: 347- 53.

[10] Arefiev A., Prat F., Chapelon J.Y., Tavakkoli J., and Cathignol D., Ultrasound-induced tissue ablation: studies on isolated perfused porcine liver, Ultrasound Med. Biol., 1998; 24: 1033-1043.

[11] Foley J.L., Vaezy S., and Crum L.A., Applications of high-intensity focused ultrasound in medicine: Spotlight on neurological applications, Applied Acoustics, 2007; 68: 245–259.

[12] White W.M., Makin I.R.S., Barthe P.G., Slayton M.H., and Gliklich R.E., Selective Creation of Thermal Injury Zones in the Superficial Musculoaponeuroti System Using Intense Ultrasound Therapy: A New Target for Noninvasive Facial Rejuvenation, Arch. Facial Plast. Surg., 2007; 9:22-29.

[13] Kuznetsov V.P., Equations of nonlinear acoustics, Sov. Phys. Acoust., 1971; 16: 467-470.

[14] Cleveland R.O., Hamilton M.F. and Blackstock D.T., Time-domain modeling of finite-amplitude sound in relaxing fluids, J. Acoust. Soc. Am., 1996; 99: 3312- 3318.

[15] Bakhvalov N.S., Zhileikin Y.M., and Zabolotskaya S.A., Nonlinear Theory of Sound Beams, American Institute of Physics, New York, 1987.

[16] Godunov S.K., Difference method for the numerical calculation of discontinuous solutions of hydrodynamical equations, Mat. Sb., 1959; 47: 271- 306.

[17] Aanonsen S.I, Barkve T., Tjotta J.N., and Tjotta S., Distortion and harmonic generation in the nearfield of a finite amplitude sound beam, J. Acoust. Soc. Am., 1984; 75: 749-768.

[18] Baker A.C., Berg A.M., Sahin A., and Tjǿtta J.N., The nonlinear pressure field of plane rectangular apertures: experimental and theoretical results, J. Acoust. Soc. Am., 1995: 97:3510 - 3517.

[19] Lee Y.S., and Hamilton M.F., Time-domain modeling of pulsed finite-amplitude sound beams, J. Acoust. Soc. Am., 1995; 97:906-917.

[20] Lee Y.S., Numerical solution of the KZK equation for pulsed finite amplitude sound beams in thermoviscous fluid, Ph.D. thesis, University of Texas, 1993.

[21] Fletcher C.A.J., Computational Techniques for Fluid Dynamics: Fundamentals and General Techniques, second edition (Springer-Verlag, Berlin), 1991: 251- 254.

[22] Szabo T.L., Time domain nonlinear wave equations for lossy media, in Advances in Nonlinear Acoustics: Proc. of 13th ISNA, ed. H. Hobaek, (World Scientific, Singapore), 1993: 89-94.

[23] Christopher P.T., and Parker K.J., New approaches to nonlinear diffractive field propagation, J. Acoust. Soc. Am., 1991; 90:488-499.

[24] Tavakkoli J., Cathignol D., Souchon R., and Sapozhnikov O.A., Modeling of pulsed finiteamplitude focused sound beams in time domain, J. Acoust. Soc. Am., 1998; 104:2061-2072.

[25] Zemp R.J., Tavakkoli J, and Cobbold R.S.C., Modeling of nonlinear ultrasound propagation in tissue from array transducers, J. Acoust. Soc. Am., 2003; 113: 139-152.

[26] Khokhlova V.A., Souchon R., Tavakkoli J., Sapozhnikov O.A., and Cathignol D., Numerical modeling of finite-amplitude sound beams: shock formation in the near field of a CW plane piston source. J. Acoust. Soc. Am., 2001; 110: 95-108.

[27] Yang X. and Cleveland R.O., Time domain simulation of nonlinear acoustic beams generated by rectangular pistons with application to harmonic imaging, J. Acoust. Soc. Am., 2005; 117: 113-123.

[28] پایان نامه کارشناسی ارشد، مجتبی حاجی حسنی، بررسی تحلیلی و حل عددی معادله KZK برای انتشار پالس در محیط غیرخطی با منبع نامتقارن، دانشگاه صنعتی شریف، دانشکده برق، بهار 1387.

[29] LeVeque, R. J. Finite Volume Methods for Hyperbolic Problems. Cambridge: Cambridge University Press, 2002: 436-446.

[30] Sherman, A. H., Algorithms for Sparse (Gaussian) Elimination with Partial Pivoting, ACM Trans. Math. Software, 1978; 4(4): 330-338.