نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 استادیار گروه بیومکانیک، دانشکده مهندسی مکانیک، دانشگاه صنعتی سهند

2 دانشیار گروه بیومکانیک، دانشکده مهندسی مکانیک، دانشگاه صنعتی سهند

3 استادیار گروه بیومکانیک، دانشکده مهندسی پزشکی، دانشگاه صنعتی امیرکبیر

10.22041/ijbme.2008.13452

چکیده

این تحقیق به نحوه تغییر بارهای مکانیکی و ساختار با افزایش سن در نمونه ای از شریان های عضلانی پرداخته است. بر اساس داده های تجربی گرداوری شده شریان براکیال به عنوان شریان عضلانی شبیه سازی شده است. با در نظر گرفتن اندرکنش سیال-جامد، از نرم افزار آدینا 1.8 برای حل عددی برای حل معادلات سیال و جامد استفاده شده است. به منظور بررسی همزمان تاثیر تنش محیطی و تنش برشی در بازسازی، موج های فشار و جریان نوسانی به عنوان شرایط مرزی انتخاب شده اند. بررسی سه الگوی بازسازی در شریان براکیال نشان داد روش آتروفیک داخلی با تغییرات کم نتایج بهتری در مقابل حفظ محدوده تنش محیطی دیواره در پی داشته و می توان آن را روش بهینه برای بازسازی شریان براکیال در نظر گرفت.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Biomechanical Study of Brachial Artery Remodeling With Aging Using Fluid Solid Interaction Method

نویسندگان [English]

  • Hanie Niroomand Oscuii 1
  • Farzan Ghalichi 2
  • Mohammad Tafazzoli Shadpour 3

1 Assistant Professor, Biomechanics Department, Mechanical Engineering School, Sahaod University of Technology

2 Associate Professor, Biomechanics Department, Mechanical Engineering School, Sahand University of Technology

3 Assistant Professor, Biomedical Engineering School, Amirkabir University of Technology

چکیده [English]

In this paper, we studied the effect of mechanical loading on remodeling process with aging in muscular arteries. Based on the gathered experimental data, the brachial artery was selected for simulation. In this simulation, pulsatile pressure and flow waves were considered as boundary conditions to study the effect of circumferential stress and wall shear stress on the remodeling process. FSI based transient numerical simulation was used to solve the fluid and solid equations. The results of three remodeling schemes showed that inward eutrophic scheme is an optimum algorithm for brachia! Artery remodeling with aging. Such remodeling scheme causes the most optimized outcome to keep circumferential stress with minimal alteration. 

کلیدواژه‌ها [English]

  • Brachial artery
  • Circumferential stress
  • Wall shear stress
  • Remodeling
  • Fluid- solid interaction

[1]     Jacobsen J. Ch. B., Gustafsson F., Holstein-Rathlou N. H.; A model of physical factors in the structural adaptation of microvascular networks in normotension and hypertension; Physiol. Meas. 2003; 24: 891–912.

[2]     Boutouyrie P., Bussy Ca., Lacolley P., Girerd X., Laloux B., Laurent S.; Association between local pulse pressure, mean blood pressure, and large-artery remodeling; Circulation 1999; 100(13): 1387-1393.

[3]     Masuda H., Zhuang Y., Singh T. M., Kawamura K., Murakami M., Zarins Ch. K., Glagov S.; Adaptive remodeling of internal elastic lamina and endothelial lining during flow-induced arterial enlargement; Arterioscler Thromb Vasc Biol. 1999; 19: 2298 2307.

[4]     O’Donnell M., Cole R., Campbell T., Davies M.R.; Arterial tissue remodeling induced by hypertension; Bioengineering In Ireland Conference 2006; January: 27-28.

[5]     Zhang L., da Cunha V., McNulty B. M., Wilson D., Sullivan M. E., Vergona R., Rutledge J. C., Wang Y. X.; Endothelial nitric oxide synthase deficiency enhanced carotid artery ligation-induced remodeling by promoting vascular inflammation; Journal of Applied Research 2006; 6(1): 100-114.

[6]     Davies P.F.; Flow mediated endothelial mechanotransduction; Physiological Reviews 1995; 75: 519-560.

[7]     Cockcroft J. R., Wilkinson I. B.; Arterial stiffness and pulse contour analysis: an age old concept revisited; Clinical Science 2002; 103: 379–380.

[8]     Sho E., Nanjo H., Sho M., Kobayashi M., Komatsu M., Kawamura K., Xu Ch., Zarins Ch. K., Masuda H,.; Arterial enlargement, tortuosity, and intimal thickening in response to sequential exposure to high and low wall shear stress; J Vasc Surg 2004; 39: 601- 12.

[9]     Carretero O. A.; Vascular remodeling and the kallikrein-kinin system; Journal of Clinical Investigation 2005; 115(3): 588-91.

[10] Dinenno F. A., Jones P. P., Seals D. R., Tanaka H.; Age-associated arterial wall thickening is related to elevations in sympathetic activity in healthy humans; Am J Physiol Heart Circ Physiol 2000; 278: H1205– H1210.

[11] Ghiadoni L., Taddei S., Virdis A., Sudano I., Di Legge V., Meola M., Di Venanzio L., Salvetti A.; Endothelial function and common carotid artery wall thickening in patients with essential hypertension; Hypertension 1998; 32: 25-32.

[12] Nichols W.W., O’Rourke M.F.; McDonald’s Blood Flow in Arteries; 4th edition, Oxford University Press. Inc., New York, NY, 1998.

[13] Reddy H.K., Koshy S.K.G., Wasson S., Quan E., Pagni S., Roberts A.M., Joshua I.G., Tyagi S.C.; Adaptiveoutward and maladaptive-inward arterial remodeling measured by intravascular ultrasound in hyperhomocysteinemia and diabetes; J Cardiovasc Pharmacol Therapeut 2006; 11(1): 65-76.

[14] Esen A.M., Barutcu I., Acar M., Degirmenci B., Kaya D., Turkmen M., Melek M., Onrat E., Esen O.B., Kirma C.; Effect of smoking on endothelial function and wall thickness of brachial artery, Circulation 2004; 68 1123 –1126.

[15] McVeigh G. E., Bratteli Ch. W., Morgan D. J., Alinder Ch. M., Glasser S. P., Finkelstein S. M., Cohn J. N.; Age-related abnormalities in arterial compliance identified by pressure pulse contour analysis: aging and arterial compliance; Hypertension 1999; 33: 1392- 1398.

[16] Hashimoto M., Eto M., Akishita M., Kozaki K., Ako J., Iijima K., Kim S., Toba K., Yoshizumi M., Ouchi Y.; Correlation between flow-mediated vasodilatation of the brachial artery and intima-media thickness in the carotid artery in men; Arterioscler Thromb Vasc Biol. 1999; 19 2795-2800.

[17] Kaiser D.R., Billups K., Mason C., Wetterling R., Lundberg J.L., Bank A.J.; Impaired brachial artery endothelium dependent and independent vasodilation in men with erectile dysfunction and no other clinical cardiovascular disease; JACC 2004; 43: 179-184.

[18] Qiu Y., Tarbell J.M.; Numerical simulation of pulsatile flow in a compliant curved tube model of a coronary artery; J. Biomechanical Engineering 2000; 122 77-85.

[19] Kaiser D.R., Mullen K., Bank A.J.; Brachial artery elastic mechanics in patients with heart failure; Hypertension 2001; 38: 1440-1445.

[20] Niroomand oscuii H., Tafazzoli Shadpour M. , Ghalichi F.; Biomechanical Analysis of Wall Remodeling in Elastic Arteries with Application of Fluid-Solid Interaction Methods; Journal of Mechanics in Medicine and Biology 2007; 7(4): 433–447.

[21] Tafazzoli M.; Analysis of mechanical stress in arteries with changes in wall structural properties; Ph. D. thesis, graduate school of biomedical engineering, university of New South Wales, 1999.

[22] Niroomand oscuii H., Tafazzoli Shadpour M., Ghalichi F.; Flow Characteristics in Elastic Arteries Using a Fluid-Structure Interaction Model; American Journal of Applied Sciences 2007; 4 (8): 516-524.

[23] Bank A.J., Kaiser D.R., Rajalla S., Cherg A.; In vivo human brachial artery elastic mechanics effect of smooth muscle relaxation; Circulation 1999; 100 41- 47.

[24] Bank A. J., Wang H., Holte J. E., Mullen K., Shammas R., Kubo S. H.; Contribution of collagen, elastin, and smooth muscle to in vivo human brachial artery wall stress and elastic modulus; Circulation 1996; 94: 3263- 3270.

[25] Deng S. X., Tomioka J., Debes J. C., Fung Y. C.; New experiments on shear modulus of elasticity of arteries; American Journal of Physiology 1994; 35: H1-H10.

[26] Verbeke F., Segers P., Heireman S., Vanholder R., Verdonck P., Van Bortel L.M.; Noninvasive assessment of local pulse pressure: Importance of Brachial-to-radial pressure amplification; Hypertension 2005; 46: 244-248.