نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشیار آزمایشگاه تحقیقاتی بیومکانیک، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران

2 دانشجوی دکترای آزمایشگاه تحقیقاتی بیومکانیک، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران

3 استاد مرکز تحقیقات نانوپزشکی و مهندسی بافت، بیمارستان آیت‌الله طالقانی، دانشگاه علوم پزشکی شهید بهشتی

10.22041/ijbme.2008.13458

چکیده

در راستای مطالعات مکانیک بیولوژیکی به عنوان یکی از زیر ساختارهای مهم علوم مهندسی بافت، در این مقاله به مدلسازی ترکیبی المان محدود دیسک های بین مهره ای به عنوان یک بافت نرم متخلخل اشباع شده پرداخته شده است. بنابراین در ابتدا با توجه به قوانین حاکم بر مکانیک محیط های پیوسته، روابط حاکم بر مدل سه فازی دیسک های بین مهره ای استخراج شده است. سپس با استفاده از روش باقیمانده وزنی گلرکین، فرمول بندی المان محدود استخراج و با بهره گیری از روش های نیومارک و بازگشتی اویلر، روابط غیرخطی حل گردیده است. در نهایت به منظور صحه گذاری مدل ریاضیاتی، نتایج مدل یک بعدی با نتایج تحلیلی دکتر سیمون و دکتر سان و همچنین اطلاعات آزمایشگاهی دکتر رست مقایسه شده است. نتایج مبین قابلیت مدل ریاضیاتی برای استفاده در مطالعات بیومکانیکی در قبال بارگذاری های مختلف مکانیکی و الکتروشیمیایی است و بنابراین می توان بر پایه این مدل به بررسی بیومکانیک مهندسی بافت دیسک های بین مهره ای در طرح ریزی فرایند کشت سلولی پرداخت. در نهایت با استفاده از مدل دوبعدی همگن صفحه ساجیتال با خواص مکانیکی دیسک بین مهره ای، به بخشی از کاربردهای متعددی که مدل می تواند در فرایند مطالعات بیومکانیک مهندسی بافت ایفا کند، اشاره ای اجمالی شده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Triphasic Finite Element Modeling of Intervertebral Discs for Biomechanical Studies in Tissue Engineering

نویسندگان [English]

  • Mohammad Haghpanahi 1
  • Mohammad Nikkhoo 2
  • Habibollah Peirovi 3

1 Associate Professor, Biomechanics Research Lab, Mechanical Engineering School, Iran University of Science and Technology

2 PhD Candidate, Biomechanics Research Lab, Mechanical Engineering School, Iran University of Science and Technology

3 Nonomedicine and Tissue Engineering Research Center, Shahid Beheshti University of Medical Science and Health Services

چکیده [English]

According to mechanobilogical studies as an infrastructure for tissue engineering researches, this paper presents a triphasic finite element modeling of intervertebral discs such a hydrated porous soft tissue. First, the governmental equations were derived on the basis of the laws of continuum mechanics. Then the standard Galerkin weighted residual method was used to form the finite element model. The implicit time integration schemes were applied to solve the nonlinear equations. The formulation accuracy and convergence for one dimensional case were examined with Simon's and Sun's analytical solutions and also Drost's experimental Data. It was shown that the mathematical model is in excellent agreement and has the capability to simulate the intervertebral disc response under different types of mechanical and electrochemical loading conditions. Finally, to have a short review of the capability of the model, a homogenous two dimensional version of the model was applied to simulate the response of a simple sagittal slice of the intervertebral disc. 

کلیدواژه‌ها [English]

  • Finite element
  • Mechanobiology
  • Porous media theory
  • intervertebral disc
  • Galerkin method
[1]     Mow V.C., Kuei S.C., Lai W.M., Armstrong C.G., Biphasic creep and stress relaxation of articular cartilage: Theory and experiments; Journal of Biomechanical Engineering; 1980; 102: 73-84.
[2]     Spilker R.L., Suh J.K., Formulation and evaluation of a finite element model for the biphasic model of hydrated soft tissue, Computers & Structures; 1990; 35; No. 4:425-439.
[3]     Suh J.K., Spilker R.L., Holmes M.H., A penalty finite element analysis for nonlinear mechanics of biphasic hydrated soft tissue under large deformation; International Journal for Numerical Methods in Engineering; 1991; 32: 1411-1439.
[4]     Suh J.K., Bai S.; Finite element formulation of biphasic poroviscoelastic model for articular cartilage; Journal of Biomechanical Engineering; 1998; 120:195- 201.
[5]     Suh J.K., DiSilvestro M.R., Biphasic poroviscoelastic behavior of hydrated biological soft tissue; Journal of Applied Mechanics; 1999; 66: 528-535.
[6]     Simon B.R., Wu J.S.S., Carlton M.W., Evans J.H., Kazarian L.E., Structural models for human spinal motion segments based on a poroelastic view of the intervertebral disc; Journal of Biomechanical Engineering; 1985; 107: 327-335.
[7]     Simon B.R., Wu J.S.S., Carlton M.W., Poroelastic dynamic structural models of Rhesus spinal motion segments; Spine; 1985; 10: 494-507.
[8]     Yang Z., Smolinsky P.; Dynamic finite element modeling of poroviscoelastic soft tissue; Computer Methods in Biomechanics and Biomedical Engineering; 2006; 9: 7-16.
[9]     Lai W.M., Hou J.S., Mow V.C., A triphasic theory for the swelling and deformation behavior of articular cartilage; Journal of Biomechanical Engineering; 1991; 113: 245-258.
[10] Gu W.Y., Lai W.M., Mow V.C., A mixture theory for charged-hydrated soft tissues containing multielectrolytes: passive transport and swelling behaviors; Journal of Biomechanical Engineering; 1998; 120: 169-180
[11] Sun D.N., Gu W.Y., Guo X.E., Lai W.M., and V.C. Mow; A mixed finite element formulation of Triphasic mechano electrochemical theory for charged, hydrated biological soft tissues; International Journal of Numerical Methods in Engineering; 1999; 45: 1375- 1402.
[12] Simon B.R., Multiphase poroelastic finite element models for soft tissue structures; Applied Mechanics Reviews; 1992; 45: 191-218.
[13] Simon B.R., Liable J.P., Yuan Y., Krag M.H.; A poroelastic finite element formulation including transport and swelling in soft tissue structures; Journal of Biomechanical Engineering; 1996; 118: 1-9.
[14] 14- Laible J.P., Pflaster D.S., Krag M.H., A poroelastic-swelling finite element model with application to the intervertebral disc; Spine; 1993; 18: 659-670.
[15] Iatridis J.C., Laible J.P., Krag M.H.; Influence of fixed charge density magnitude and distribution on the intervertebral disc: applications of a poroelastic and chemical electric (PEACE) model; Journal of Biomechanical Engineering; 2003; 125: 12-24.
[16] Nikkhoo M., Haghpanahi M., Peirovi H., Ghanavi J., Mathematical model for tissue engineered intervertebral disc as a saturated porous media; Proceedings of the 3rd International Conference on Applied and Theoretical Mechanics; Spain; 2007: 197- 201.
[17] Bathe K.J., Finite Element Procedure; Prentice Hall; 1995.
[18] Duffy D.G., Advanced Engineering Mathematics with MATLAB; Chapman and Hall/CRC; 2003.
[19] Drost M.R., Willems P., Snijders H., Huyghe J.M., Janssen J.D., Huson A., Confined Compression of Canine Annulus Fibrosus Under Chemical and Mechanical Loads; Journal of Biomechanical Engineering; 1995; 117: 390– 396.
[20] Matsumoto T., Kawakami M., Kuribayashi K., Takenaka T., Tamaki T., Cyclic mechanical stretch stress increases the growth rate and collagen synthesis of nucleus pulposus cells in vitro; Spine; 1999; 24:315- 319.