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Abstract

One of the most important challenges in automatic speech recognition is in the case of difference
between the training and testing data. To decrease this difference, the conventional methods try to
enhance the speech or usethe statistical model adaptation. Training the model in different situationsis
another example of these methods. The success rate in these methods compared to those of cognitive
and recognition systems of human beings seems too much primary. In this paper, an inspiration from
human beings recognition system helped us in developing and implementing a new connectionist
lexical model. Integration of imputation and classification in a single NN for ASR with missing data
was investigated. This can be considered as a variant of multi-task learning because we train the
imputation and classification tasks in parallel fashion. Cascading of this model and the acoustic model
corrects the sequence of the mined phonemes from the acoustic model to the desirable sequence. This
approach was implemented on 400 isolated words of TFARSDAT Database (Actual telephone
database). In the best case, the phoneme recognition correction increased in 16.9 percent.
Incorporating prior knowledge (high level knowledge) in acoustic-phonetic information (lower level)
can improve the recognition. By cascading the lexical model and the acoustic model, the feature
parameters were corrected based on the inversion techniques in the neural networks. Speech
enhancement by this method had a remarkable effect in the mismatch between the training and testing
data. Efficiency of the lexical model and speech enhancement was observed by improving the

phonemes' recognition correction in 18 per cent compar ed to the acoustic model.
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