نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 استادیار، گروه تخصصی بیومکانیک، دانشکده مهندسی پزشکی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران

2 مدیر عامل، شرکت دانش بنیان آتیلا ارتوپد، تهران، ایران

3 دانشیار، گروه تخصصی بیومکانیک، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران

10.22041/ijbme.2014.13534

چکیده

با توسعه­ی فنّاوری­های پیش­رفته در زمینه­ی ایمپلنت­های ستون فقرات، طراحی و ساخت کیج­های گردنی برای اوّلین بار در ایران مورد توجه قرار گرفته­است. این پروژه­ی تحقیقاتی صنعتی برمبنای مطالعات دقیق بیومکانیکی و براساس مدل­های عملکردی اجزای محدود و آزمایش­های مکانیکی مربوط به آن انجام می­شود. درین تحقیق، بهینه­سازی طراحی و مطالعه­ی بیومکانیکی تنها کیج گردنی بومی سازی شده در ایران (ساخت شرکت دانش­بنیان آتیلا ارتوپد) بررسی شد. بدین منظور، ابتدا مدل اجزای محدود گردنی (C2-C7) تهیّه و محدوده­ی حرکتی آن با نتایج آزمایش­های آزمایشگاهی صحه­گذاری شد. سه پارامتر ابعادی به عنوان ورودی و دو پارامتر خروجی (شامل میزان تغییر شکل دندانه­های کیج در آزمایش استاتیکی و دینامیکی، طبق استاندارد ASTM F2077 برای فرآیند بهینه سازی طراحی و استفاده شد. سپس، تغییرات مورد نیاز جهت شبیه­سازی عمل جراحی هم­جوشی در سطح C5-C6 با جای­گذاری کیج گردنی انجام شد. درنهایت، نتایج مطالعه­های بیومکانیکی روی محصول نهایی کیج گردنی بومی­سازی ارائه شد. نتایج مطالعه­های بیومکانیکی نشان داد که این محصول به خوبی می­تواند در اعمال جراحی مورد استفاده قرار گرفته و مطابق با استانداردهای نمونه­های خارجی موجود در بازار، جهت کاربرد در جراحی­ها رقابت نماید.
 

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Design and Biomechanical Study of the First Iranian Cervical Cage using Finite Element Analyses

نویسندگان [English]

  • Mohammad Nikkhoo 1
  • Ali Tahassori 2
  • Mohammad Haghpanahi 3

1 Assistant Professor, Biomechanics Group, Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Managing Director, Attila Orthopaed Co. Tehran, Iran

3 Associate Professor, Biomechanics Group, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran

چکیده [English]

To develop the advanced technologies in medical device industry, design and manufacturing of cervical cage was performed in Iran for the first time. This research-based industrial project should be accomplished based on precise biomechanical studies and mechanical tests. Hence, this study presents the optimization and biomechanical functional investigations of the first Iranian cervical cage (Manufactured by Attila Ortopaed Co.). For this purpose the intact cervical spine (C2-C7) was developed and was validated with in-vitro experiments.  Three inputs (i.e. geometrical parameters of the cage) and two outputs (i.e. deformation of the teeth in static and dynamic tests) parameters were selected for optimization procedure. Furthermore, the surgery in C5-C6 level was simulated by implanting the cervical cage. Finally, the biomechanical responses were investigated. The result confirmed that the biomechanical response of cervical cage is within the standard range and can be used well in clinics for surgical procedures.

کلیدواژه‌ها [English]

  • Cervical Cage
  • Technology Localization
  • Cervical Spine Biomechanics
  • finite element analysis
  • Fusion

[1]     A. Muheremu, X. Niu, Z. Wu, Y. Muhanmode, W. Tian, “Comparison of the short- and long-term treatment effect of cervical disk replacement and anterior cervical disk fusion: a meta-analysis” Eur J Orthop Surg Traumatol, Published online (May 5), 2014.

[2]     D. E. Bullard, J. S. Valentine, “Early Morbidity of Multilevel Anterior Cervical Discectomy and Fusion with Plating for Spondylosis: Does the Number of Levels Influence Early Complications? A Single Surgeon's Experience in 519 Consecutive Patients” Evidence Based Spine Care Journal Vol 4, No 1, pp 13-17, 2013.

[3]     K. Kotil, R. Tari, “Two level cervical corpectomy with iliac crest fusion and rigid plate fixation: a retrospective study with a three-year follow up”, Turk Neurosurg Vol 21, No 4, pp 606-12, 2011.

[4]     H. M. Heneghan, J. P. McCabe, “Use of autologous bone graft in anterior cervical decompression: morbidity & quality of life analysis” BMC Musculoskelet Disord  Vol 10, pp 1-7, 2009.

[5]     J. S. Uribe, J. R. Sangala, et al. “Comparison between anterior cervical discectomy fusion and cervical corpectomy fusion using titanium cages for reconstruction: analysis of outcome and long-term follow-up” Eur Spine J Vol 18, No 5, pp 654-62, 2009.

[6]     H. C. Pan, Y. C. Wang, et al. “Hollow bone cement filled with impacted cancellous bone as a substitute for bone grafts in cervical spine fusion” J Clin Neurosci Vol 14, No 2, pp 143-7, 2007.

[7]     K. J. Song, S. J. Yoon, K. B. Lee, “Three- and four-level anterior cervical discectomy and fusion with a PEEK cage and plate construct” Eur Spine J Vol 21, No 12, pp 2492-7, 2012.

[8]     C. C. Niu, J. C. Liao, W. J. Chen, L. H. Chen, “Outcomes of interbody fusion cages used in 1 and 2-levels anterior cervical discectomy and fusion: titanium cages versus polyetheretherketone (PEEK) cages” J Spinal Disord Tech Vol 23, No 5, pp 310-6, 2010.

[9]     A. Zagra, L. Zagra, L. Scaramuzzo, L. Minoia, M. Archetti, F. Giudici, “Anterior cervical fusion for radicular-disc conflict performed by three different procedures: clinical and radiographic analysis at long-term follow up” Eur Spine J Vol 22, Suppl 6, pp S905-9, 2013.

[10] F. J. Aslani, D. W. Hukins, D. E. Shepherd, “Effect of side holes in cervical fusion cages: a finite element analysis study” Proc Inst Mech Eng H, Vol 225, No 10, pp 986-92, 2011.

[11] P. C. Fernandes, P. R. Fernandes, J. O. Folgado, J. Levy Melancia, “Biomechanical analysis of the anterior cervical fusion” Comput Methods Biomech Biomed Engin, Vol 15, No 12, pp 1337-46, 2012.

[12] M. Nikkhoo, M. Haghpanahi, M. Parnianpour, J. L. Wang, “Dynamic Response of Intervertebral Disc During Static Creep and Dynamic Cyclic Loading: A Parametric Poroelastic Finite Element Analysis” Vol 25, No 1, pp 1-9, 2013.

[13] D. R. Epari, F. Kandziora, G. N. Duda, “Stress shielding in box and cylinder cervical interbody fusion cage designs” Spine Vol 30, No 8, pp 908-14, 2005.

[14] Z. C. Zhong, S. H. Wei, J. P. Wang, C. K. Feng, C. S. Chen, C. H. Yu, “Finite element analysis of the lumbar spine with a new cage using a topology optimization method” Med Engng Phy Vol 28, No 1, pp 90–98, 2006.

[15] F. Kandziora, R. Pflugmacher, J. Schäfer, C. Born, G. Duda, N. P. Haas, T. Mittlmeier,  “Biomechanical comparison of cervical spine interbody fusion cages” Spine Vol 26, No 17, pp1850-7, 2001.

[16] C. Adam, M. Pearcy, P. McCombe, “Stress analysis of interbody fusion – finite element modeling of intervertebral implant and vertebral body” Clin Biomech Vol 18, No 4, pp 265–272, 2003.

[17] T. R. Oxland, T. Lund, “Biomechanics of stand-alone cages and cages in combination with posterior fixation: a literature review” Eur Spine J, Vol. 9, Suppl 1, pp. S95-101, 2000.

[18] S. Vadapalli, K. Sairyo, V. K. Goel, M. Robon, A. Biyani, A. Khandha, and N. A. Ebraheim, “Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion – a finite element study” Spine Vol 31, No 26, pp E992–E998, 2006.

[19] H. Ritzel, M. Amling, M. Pösl, M. Hahn, G. Delling, “The thickness of human vertebral cortical bone and its changes in aging and osteoporosis: a histomorphometric analysis of the complete spinal column from thirtyseven autopsy specimens”, Journal of Bone and Mineral Research, Vol 12, No 1, pp 89–95, 1997.

[20] N. Yoganandan, S. Kumaresan, F. A. Pintar, “Biomechanics of the cervical spine. Part 2. Cervical spine soft tissue responses and biomechanical modeling” Clinical Biomechanics Vol 16, No 1, pp 1–27, 2001.

[21] S. Kumaresan, N. Yoganandan, F. A. Pintar, “Finite element modeling approaches of human cervical spine facet joint capsule” Journal of Biomechanics Vol 31, No 4, pp 371–376, 1998.

[22] N. Toosizadeh, M. Haghpanahi, “Generating a finite element model of the cervical spine: Estimating muscle forces and internal loads” Scientia Iranica B Vol 18, No 6, pp 1237-1245, 2011.

[23] M. M. Panjabi, T. Miura, P. A. Cripton, et al. “Development of a  system for in vitro neck muscle force replication in whole cervical spine experiments” Spine (Phila Pa 1976) Vol 15, No 26, pp 2214-9, 2001.

[24] M. Nikkhoo, Y. C. Hsu, M. Haghpanahi, M. Parnianpour, J. L. Wang, “A meta-model analysis of a finite element simulation for defining poroelastic properties of intervertebral discs” Proc Inst Mech Eng H, Vol 227, No 6, pp 672-82, 2013.

[25] G. W. Smith, R. A. Robinson, “The treatment of certain cervical spine disorders by anterior removal of the intervertebral disc and interbody fusion” J Bone Joint Surg Am Vol 40, No 3, pp 607-24, 1958.

[26] E. C. Benzel, “Biomechanics of cervical spine surgery for tumor and degenerative diseases”, Neurol Med Chir, Vol 37, No 8, pp 583-93, 1997.

[27] C. A. Dickman, P. J. Apostolides, D. G. Karahalios, “Surgical techniques for upper cervical spine decompression and stabilization” Clin Neurosurg Vol 44, pp 137-60, 1997.

[28] J.I. Park, D. C. Cho, K. T. Kim, J. K. Sung, “Anterior cervical discectomy and fusion using a stand-alone polyetheretherketone cage packed with local autobone: assessment of bone fusion and subsidence” J Korean Neurosurg Soc Vol 54, No 3, pp 189-93, 2013.

[29] A. Nayak, M. I. Stein, C. James, R. B. Gaskins, A. Cabezas, M. Adu-Lartey, A. E. Castellvi, B. G. Santoni, “Biomechanical Analysis of An Interbody Cage with Three Integrated Cancellous Lag Screws In a Two-Level Cervical Spine Fusion Construct: An In-Vitro Study” Spine J Published online, 2014.

[30] M. Dağlı, U. Er, S. Simşek, M. Bavbek, “Late results of anterior cervical discectomy and fusion with interbody cages” Asian Spine J Vol 7, No 1, pp 34-8, 2013.

[31] M. Cabraja, S. Oezdemir, D. Koeppen, S. Kroppenstedt, “Anterior cervical discectomy and fusion: comparison of titanium and polyetheretherketone cages” BMC Musculoskelet Disord Vol 14, No 13, pp172, 2012.