نوع مقاله: مقاله کامل پژوهشی

نویسندگان

دانشگاه صنعتی امیرکبیر، دانشکده مهندسی پزشکی

10.22041/ijbme.2005.13583

چکیده

به منظور مدل سازی سیستم حرکتی انسان در انجام حرکات مهارتی، مدلی با ساختار سلسله مراتبی سه لایه ارایه شده است. در هر سطح براساس میزان دقت و کیفیت امر کنترل، کنترل کننده خاصی وارد عمل شده و عمل کنترل در آن سطح را انجام می دهد. در سطح اول، مفاهیم کنترلی به صورت عام و کیفی مورد بررسی قرار می گیرد و وظیفه آن، حفظ پایداری سیستم براساس اطلاعات کیفی دریافتی از سطح دوم مانند کاهش یا افزایش خطا می باشد. در این سطح، از یک کنترل کننده خودسازمانده برای تولید فرامین حرکتی عام استفاده می گردد که نقش تشویق و تنبیه را برای تضمین پایداری سیستم  با ارسال فرمان های گسسته به سطح دوم ایفا می کند. این کنترل کننده با توجه به وظیفه خود، تنها در زمانی که کنترل کننده سطح دوم به تنهایی قادر به حفظ پایداری سیستم نباشد، وارد عمل شده و پایداری را تضمین می کند. سطح دوم، امر کنترل را به صورت کمی تر و دقیق تری دنبال می کند و عمل تطبیق در این سطح صورت می گیرد. اطلاعاتی که ازن سطح عموما از مسیرهای فیدبک حسی و چشمی دریافت می کند، مفاهیم دقیق تری از عملکرد کنترلی را شامل می شوند (مانند میزان خطای موجود در انجام حرکت). در سطح دوم از کنترل کننده پیش بین مبتنی بر مدل برای تولید فرامین کنترلی کمی تر و دقیق تر استفاده شده است که در واقع خط سیر حرکتی را تعیین می کند. یک سوییچ فازی، فرامین کنترلی سطح اول و دوم را براساس روش کنترل مود لغزان برای ایجاد یک سیستم کنترل مقاوم تلفیق می کند. در سطح سوم نیز این فرامین حرکتی، با تعیین عضلات درگیر و نحوه هماهنگی آنها در انجام حرکت مورد نظر، تفسیر می شود و به عضلات، فرامین حرکتی مناسب اعمال می گردد. اطلاعات دریافتی در این سطح عموما در مورد میزان مشارکت عضلات در انجام حرکت و نیز تاثیر محیط روی سیستم حرکتی است که توسط فیدبک های حسی به این سطح منتقل می شوند. مدل ارایه شده با چنین ساختار سلسله مراتبی، قابلیت مناسبی در کنترل و حفظ پایداری سیستم دارد. نتایج شبیه سازی ها این موضوع را تایید می کند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

A Model For Skill Movements Based On Self-Organized Control Strategy

نویسندگان [English]

  • Amir Homayoun Jafari
  • Seyed Mohammad Reza Hashemi Golpayegani
  • Farzad Towhidkhah
  • Ali Fallah

Department of Biomedical Engineering, Amir Kabir University of Technology

چکیده [English]

A hierarchical structure model with three levels is presented for modeling motor control in skill movements. At each level, based on accuracy and quality of control, a specific controller is activated. At first level, control concepts are qualitative. The duty of the first level is to provide stability of system, based on the received qualitative information from second level such as the decrement or increment of error. A self-organized controller at first level is used to generate qualitative control commands, and it plays an encouragement-punishment role to keep the stability of system by sending discrete commands to the second level. This controller only contributes at control action when the controller of second level can not preserve stability individually. At second level, control concepts are quantitative. The duty of the second level is adaptation and control of system accurately. The received information at this level generally comes from sensory and visual feedbacks, and it includes more accurate concepts of control action - like the amount of movement error. A model based on the predictive controller at second level generates quantitative control commands and indeed, determines trajectory of movement accurately. A fuzzy switch combines the control commands of first and second levels, based on the sliding mode strategy, to provide a robust control. At third level, this command is interpreted and then is applied to the involved muscles in movement. The received information at this level is generally the contribution of muscles in performing movement and the effects of environment on the movement, which comes from sensory feedbacks. The presented model with this hierarchical structure has a proper ability to control and keep the stability of system. The simulation results confirm this subject. 

کلیدواژه‌ها [English]

  • hierarchical structure
  • Self-organized control
  • sliding mode control
  • model predictive control
  • Skill movements

[1]     Hanneton S, Berthoz A, Droulez D, Slotine JJE; Does the brain use sliding variables for the control of movements; Biological Cybernetics 1997; 77(6): 381-393.

[2]     Kawato M, Wolpert DM, Miall RC; Internal models in the cerebellum; Trends in Cognitive Sciences Sep 1998; 2: 9.

[3]     Shadmehr R, Bhushan N; Computational nature of human adaptive control during learning of reaching movements in force fields; Biol Cybern 1999; 81: 39- 60.

[4]     Bullock D, Grossberg S; The VITE model: A neural command circuit for generating arm and articulator trajectories; in Keslo J, Mandell A, Shlesinger M (Eds); Dynamic Patterns in Complex Systems; Singapore, World Scientific Publishers; 1998: 305 326.

[5]     Bullock D, Grossberg S, Mannes C; A neural network model for cursive script production; Biological Cybernetics 1993; 70: 15-28.

[6]     Grossberg S, Paine R; A neural model of corticocerebellar interactions during attentive imitation and predictive learning of sequential handwriting movements; Neural Networks 2000; 13: 999-1046.

[7]     Towhidkhah F; Model Predictive Impedance Control:A Model for Joint Movement Control; Ph.D. Dissertation, University of Saskatchewan, Saskatoon 1996.

[8]     جعفری امیرهمایون، پیاده‌یازی مدل مخچه به روش MPIC و شبکه عصبی؛ پایان‌نامه کارشناسی ارشد، دانشگاه صنعتی امیرکبیر، بهمن 1377.

[9]     http://originresearch.com/sd/sd1.cfm

[10] Slotine JJE, Li W; Applied Nonlinear Control; Prentice- Hall; 1991: 276-309.

[11] DeCarelo RA, Zak SH, Mathews GP; Variable Structure Control of Nonlinear Multivariable System: a tutorial; proceeding of the IEEE Mar 1988; 76(3): 212- 231.

[12] Linkers DA, Mahfonf M; Advances in Model-Based Predictive Control; Oxford University Press; 1994; Chap 4.

[13] Camacho EF, Bordons C; Model Predictive Control in the Process Industry; Springer-Verlag, London; 1989; Chap 1.

[14] Clarke DW, Mohtadi C, Tuffs PS; Generalized predictive control- Part-I. The basic algorithm; Automatica 1987; 23: 137 148.

[15] Clarke DW, Mohtadi C, Tuffs PS; Generalized predictive control- Part-II. Extensions and interpretations; Automatica 1987; 23: 149–160.

[16] DEmircioglu H, Gawthrop PJ; Continuous-time generalized predictive control (CGPC); Automatica 1991; 27: 55-74.

[17] Saint-Donat J, Bhat N, McAvoy TJ; Neural net based model predictive control; Int J Control 1991; 54: 1453- 1468.

[18] Barron RL; Self-organizing and Learning Control Systems; Adaptronics Inc, McLean, Virginia; 1975: 147- 203.

[19] Barron RL; Self-organizing controllers-part I; Control Engineering Feb 1968: 70-74.

[20] Barron RL; Self-organizing controllers-part II; Control Engineering Mar 1968: 69-74.