نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی پزشکی، گروه بیومکانیک، دانشکده مهندسی پزشکی، دانشگاه صنعتی امیرکبیر، تهران

2 2دانشجوی دکتری مهندسی پزشکی، گروه بیومکانیک، دانشکده مهندسی پزشکی، دانشگاه صنعتی امیرکبیر، تهران

3 دانشیار، گروه بیومکانیک، دانشکده مهندسی پزشکی، دانشگاه صنعتی امیرکبیر، تهران

4 استادیار، گروه جراحی مغز و اعصاب، دانشگاه علوم پزشکی شهید بهشتی، تهران

10.22041/ijbme.2016.14650

چکیده

ناهنجاری‌های هندسی ستون فقرات، بطور کلی با دردهای مزمن کمری و گردنی همراه هستند. در این ناهنجاری‌ها، انحنای ستون مهره در فضای سه‌بعدی دست­خوش تغییراتی می‌شود که در بسیاری از موارد ضمن کاهش میزان بازشدگی قفسه سینه، به اختلالات تنفسی و اثرات منفی بر روی سیستم قلبی منجر می‌شود. برای تصحیح این ناهنجاری‌ها و جلوگیری از پیشرفت آن‌ها در حالت حاد، جراحان از جراحی فیوژن خلفی ستون مهره‌ها استفاده می‌کنند. قبل از انجام عمل جراحی به منظور تشخیص وضعیت بیمار و انتخاب روش مناسب عمل، استخراج برخی پارامترهای کلینیکی مهم ستون فقرات ازجمله انحناها، زوایای کوب، انحراف جانبی، زوایای مهره‌ها و میزان چرخش آن‌ها در صفحات مختلف ضروری است. دراین پژوهش ابتدا با استفاده از تصاویر توموگرافیک ویرایش شده در نرم‌افزار میمیکس، مدل سه‌بعدی ستون مهره‌ها در قالب ابر نقاط بدست­آمد. سپس ضمن تفکیک و جداسازی مهره‌ها به کمک روش‌های خوشه‌بندی مختلف ازجمله روش شبکه­ی عصبی خودسازمان‌ده، روش k-میانگین و روش سلسله مراتبی، اطلاعات هندسی مهم مقاطع ستون مهره‌ها مانند انحناهای ستون مهره‌ها و زوایای آن با استفاده از الگوریتم‌های تخصیص منحنی، به‌صورت خودکار استخراج شد. بعلاوه، در حین پیاده‌سازی الگوریتم‌های مشخص، سایر ویژگی‌های کلینیکی هریک از مهره‌ها ازجمله کمینه و بیشینه ارتفاع مهره در سه بعد، طول و عرض جسم مهره‌ای و نیز جابجایی نسبی مهره‌ها به صورت خودکار محاسبه گردید. به‌منظور اعتبارسنجی روش‌های ارائه‌شده و اندازه‌های استخراج‌شده، مقادیر به‌دست‌آمده در هر مرحله توسط یک رادیولوژیست و یک جراح ستون فقرات که نسبت به اهداف و نتایج تحقیق ناآگاه بودند، محاسبه شدند. با مقایسه­ی مقادیر متناظر، اعتبار نتایج و کارایی بالای الگوریتم‌های پیشنهادی تأیید گردید.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

A Novel Approach for Automatic Calculation of Required Parameters in Spine Surgery using CT Images Row Data

نویسندگان [English]

  • Mojtaba Shahab 1
  • Behzad Seyfi 2
  • Nasser Fatouraee 3
  • Amir Saeid Seddighi 4

1 M.Sc Student, Biomechanic Department, Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran

2 Ph.D Student, Biomechanic Department, Biomedical EngineeringFaculty, Amirkabir University of Technology, Tehran, Iran

3 Associate Professor, Biomechanic Department, Biomedical EngineeringFaculty, Amirkabir University of Technology, Tehran, Iran

4 Assistant Professor, Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

چکیده [English]

Spinal deformities are generally associated with lumbar and cervical chronic pain and additionally they disturb the health. In these deformities, lumbar spinal curvature undergone changes in three dimensional space and in most cases, they cause reduction of lung capacities, breathing problems and negative effects on cardiovascular system. In critical deformity cases, in order to correct the deformity and prevent its progression, surgeons determine to perform posterior spinal fusion. As a result, they need to extract some important clinical parameters of spine such as Cobb angle, sagittal and coronal balance, spinal curvature, vertebraes angles and their rotations. In this study, edited tomographic images in MIMICS, were used to prepare a three dimensional model of the spine. Then by using curve fitting techniques and different clustering methods such as self-organization nueral network, k-means and hierarchical method, vertebras were separated and important geometrical data such as curvature of the spine and vertebras angle were obtained. In addition, through implementation of certain algorithms, other clinical features of each vertebra, including minimum and maximum height, length and width of the vertebral body and the relative displacement of vertebras were calculated automatically. In order to validate the proposed methods, measures and angles; derived values obtained automatically at each stage, were again calculated by a radiologist and a spine surgeon who was unaware of the goals of the research. Automatic values were verified by being compared with these manual results. In conclusion the reliability, accuracy and performance of the proposed automatic algorithms were demonstrated.

کلیدواژه‌ها [English]

  • Spinal deformities
  • Cobb angle
  • Clustering methods
  • Scoliosis
  • Vertebral anthropometry

[1]           I. Kapandji, The Physiology of the Joints, vol. 3, Churchill Livingstone, Edinburg, Scotland, 1974.

[2]           T. Dyson-Hudson, S. Kirshblum, Shoulder pain in chronic spinal cord injury, Part I: Epidemiology, etiology, and pathomechanics, The journal of spinal cord medicine, Vol. 27, No. 1, pp. 4-17, 2003.

[3]           K. Westwood, M. Griffin, K. Roberts, M. Williams, K. Yoong, T. Digger, Incentive spirometry decreases respiratory complications following major abdominal surgery, The Surgeon, Vol. 5, No. 6, pp. 339-342, 2007.

[4]           Barney L, Freeman III. Scoliosis and Kyphosis.  Campbelles  operativeorthopeadics,.New York: Mosby, 2003:1877-1880.

[5]           B. Freeman III, Scoliosis and kyphosis, Campbell's Operative Orthopaedics. 11th ed. Philadelphia, Pa: Mosby Elsevier, 2007.

[6]           J. A. Herring, Tachdjian's pediatric orthopaedics: from the Texas Scottish Rite Hospital for children: Elsevier Health Sciences, 2013.

[7]           D. Ghista, G. Viviani, K. Subbaraj, P. Lozada, T. Srinivasan, G. Barnes, Biomechanical basis of optimal scoliosis surgical correction, Journal of biomechanics, Vol. 21, No. 2, pp. 77-88, 1988.

[8]           W. Wang, G. R. Baran, R. R. Betz, A. F. Samdani, J. M. Pahys, P. J. Cahill, The Use of Finite Element Models to Assist Understanding and Treatment For Scoliosis: A Review Paper, Spine Deformity, Vol. 2, No. 1, pp. 10-27, 2014.

[9]           R. A. Hibbs, An operation for progressive spinal deformities, Clinical Orthopaedics and Related Research, Vol. 35, pp. 4-8, 1964.

[10]         W. E. Stehbens, R. L. Cooper, Regression of juvenile idiopathic scoliosis, Experimental and molecular pathology, Vol. 74, No. 3, pp. 326-335, 2003.

[11]         M. A. Asher, D. C. Burton, Adolescent idiopathic scoliosis: natural history and long term treatment effects, Scoliosis, Vol. 1, No. 1, pp. 2, 2006.

[12]         A. A. WHITE III, M. M. PANJABI, The clinical biomechanics of scoliosis, Clinical orthopaedics and related research, Vol. 118, pp. 100-112, 1976.

[13]         M. Thacker, J. H. Hui, H. Wong, A. Chatterjee, E. Lee, Spinal fusion and instrumentation for paediatric neuromuscular scoliosis: retrospective review, Journal of Orthopaedic Surgery, Vol. 10, No. 2, 2002.

[14]         J. C. Gardner, S. L. Heyano, L. G. Yaffe, G. von Ingersleben, C. H. Chestnut III, Semiautomated computerized system for fracture assessment of spinal x-ray films, in Proceeding of, International Society for Optics and Photonics, pp. 996-1008.

[15]         Z. Zhang, W. V. Stoecker, R. H. Moss, Border detection on digitized skin tumor images, Medical Imaging, IEEE Transactions on, Vol. 19, No. 11, pp. 1128-1143, 2000.

[16]         D. M. Krainak, L. R. Long, G. R. Thoma, Method of content-based image retrieval for a spinal x-ray image database, in Proceeding of, International Society for Optics and Photonics, pp. 108-116.

 [17]        E. Berthonnaud, J. Dimnet, Analysis of structural features of deformed spines in frontal and sagittal projections, Computerized Medical Imaging and Graphics, Vol. 31, No. 1, pp. 9-16, 2007.

[18]         T. Vrtovec, B. Likar, F. Pernuš, Quantitative analysis of spinal curvature in 3D: application to CT images of normal spine, Physics in medicine and biology, Vol. 53, No. 7, pp. 1895, 2008.

[19]         J. R. Meakin, F. W. Smith, F. J. Gilbert, R. M. Aspden, The effect of axial load on the sagittal plane curvature of the upright human spine< i> in vivo, Journal of biomechanics, Vol. 41, No. 13, pp. 2850-2854, 2008.

[20]         D. C. Moura, J. Boisvert, J. G. Barbosa, H. Labelle, J. M. R. Tavares, Fast 3D reconstruction of the spine from biplanar radiographs using a deformable articulated model, Medical engineering & physics, Vol. 33, No. 8, pp. 924-933, 2011.

[21]         T. Whitmarsh, L. Humbert, L. M. Del Río Barquero, S. Di Gregorio, A. F. Frangi, 3D reconstruction of the lumbar vertebrae from anteroposterior and lateral dual-energy X-ray absorptiometry, Medical image analysis, Vol. 17, No. 4, pp. 475-487, 2013.

[22]         L. P. Veelenturf, Analysis and applications of artificial neural networks: Prentice-Hall, Inc., 1995.

[23]         A. R. Web, "Statistical Pattern Recognition", John Wiley & Sons, 2002.

[24]         Chung, Jae Yoon et al. “Spontaneous Reduction Finding: Magnetic Resonance Imaging Evaluation of Segmental Instability in Spondylolisthesis.” Asian Spine Journal 6.4 (2012): 221–226. PMC. Web. 20 June 2015.

[25]         M. Nault, J. Thiong, I. Turgeon, H. labelle, S. Parent, Three-Dimensional Spinal Morphology Can Differentiate Between Progressive and Nonprogressive Patients with Adolescent Idiopathic Scoliosis at the Initial Presentation: A Prospective Study, J. Spine, vol 39, Issue 10, pp 601-606, 2014.