نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 کارشناس ارشد مهندسی پزشکی، گروه بیومکانیک، دانشکده مهندسی مکانیک، دانشگاه صنعتی سهند، تبریز

2 دانشیار، گروه بیومکانیک، دانشکده مهندسی مکانیک، دانشگاه صنعتی سهند، تبریز

3 استاد، گروه بیومکانیک، دانشکده مهندسی مکانیک، دانشگاه صنعتی سهند، تبریز

10.22041/ijbme.2016.19437

چکیده

بیماری‌های حاد قلبی در سراسر جهان رو به افزایش است و پیوند قلبی به دلیل نبود اهداکنندگان کافی، راه حل مناسبی برای درمان تمامی بیماران قلبی نیست؛ بنابراین استفاده از پمپ‌های کمک قلبی می‌تواند جایگزین مناسبی برای پیوندهای قلبی حتی در درمان‌های طولانی مدت باشد. یک پمپ کمک قلبی علاوه بر برآورده کردن نیازهای بیولوژیکی مانند دبی و هد مناسب، باید از لحاظ آسیب‌های خونی نیز در ناحیه ایمن قرار بگیرد. از مهم‌ترین چالش‌ها در زمینه‌ی طراحی پمپ‌های کمک قلبی می‌توان به کاهش آسیب‌های خونی، ابعاد و زمان ماندگاری و به شبیه‌سازی جریان قلب طبیعی اشاره کرد. یکی از مهم‌ترین عواملی که در تعیین میزان آسیب‌های خونی در پمپ تأثیر گذار است، نوع پره‌های قسمت‌های مختلف پمپ است. مطالعاتی که در زمینه‌ی پمپ‌های قلبی انجام شده‌اند، نشان می‌دهند که می‌توان با تغییر نوع پره‌های ایمپلر پمپ و جایگزین نمودن ایرفویل مناسب‌تر، بازده‌ی پمپ را افزایش داده و نقاط سکون سیال درون پمپ که منجر به ترومبوسیز می‌گردد را کاهش داد. هدف از انجام این پژوهش، مقایسه‌ی عملکرد چندین ایرفویل برای پره‌های ایمپلریک پمپ کمک قلبی به منظور بهینه‌سازی عملکرد و بازده‌ی پمپ و همچنین کاهش آسیب‌های خونی است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Numerical Study of the Performance of a Blood Pump by Comparison of Three Different Impeller Blade Geometries to Improve Efficiency and Decrease Blood Damages

نویسندگان [English]

  • Erfan Nammakie 1
  • Hanieh Niroomand Oscuii 2
  • Farzan Ghalichi 3
  • Mojtaba Koochaki 1

1 M.Sc., Division of Biomechanics, Department of Mechanical Engineering, Sahand University of Technology, Tabriz, Iran

2 Associate Professor, Division of Biomechanics, Department of Mechanical Engineering, Sahand University of Technology, Sahand, Iran

3 Professor, Division of Biomechanics, Department of Mechanical Engineering, Sahand University of Technology, Sahand, Iran

چکیده [English]

Myocardial diseases are on the rise all over the world and due to lack of sufficient donors, heart transplants are not the perfect solutions to treat all patients with heart failure. Therefore, in recent years, blood pumps have received a worldwide admissibility and have become the unrivalled tools for replacing a failed heart. In addition to biological needs such as sufficient head and flow rate, an assist blood pump should be in an acceptable margin of safety in terms of blood injuries such as hemolysis and thrombosis. Reducing blood damages, minimizing dimensions, reducing exposure time and simulating blood flow of natural heart are amongst the greatest challenges in designing assist blood pumps. One of the most important factors in determining the amount of blood injuries inside the pump is the blades’ shape of different parts of the pump. Studies have been conducted about ​​heart pumps show that it is feasible to increase the efficiency of the pump and reduce the stagnation points that lead tothrombus formation by changing the type of blades of the impeller. The purpose of this study is to compare the performance of several airfoils for the blades of the impeller of an assist heart pump in order to optimize the performance and efficiency of the pump and reduce blood damages.

کلیدواژه‌ها [English]

  • blood pump
  • impeller
  • Computational Fluid Dynamics (CFD)
  • hemolysis
  • Efficiency
[1]           S. Takatani, "Beyond implantable first generation cardiac prostheses for treatment of end-stage cardiac patients with clinical results in a multicenter," Annals of thoracic and cardiovascular surgery, vol. 8, pp. 253-263, 2002.
[2]           G. W. Burgreen, J. F. Antaki, and B. P. Griffith, "A design improvement strategy for axial blood pumps using computational fluid dynamics," ASAIO Journal, vol. 42, pp. M354-359, 1996.
[3]           Y. Miyazoe, T. Sawairi, K. Ito, Y. Konishi, T. Yamane, M. Nishida, et al., "Computational Fluid Dynamics to Establish the Design Process of a Centrifugal Blood Pump: Second Report," Artificial Organs, vol. 23, pp. 762-768, 1999.
[4]           Y. Qian and C. Bertram, "Computational Fluid Dynamics Analysis of Hydrodynamic Bearings of the VentrAssist Rotary Blood Pump," Artificial Organs, vol. 24, pp. 488-491.
[5]           Z. U. Warsi, Fluid dynamics: theoretical and computational approaches: CRC press, 2005.
[6]           A. Untaroiu, "LEV-VAD2 Axial Flow Blood PumpOptimized Flow Path Design by Means of Computational Fluid Dynamics," Doctor of Philosiphy in Mechanical and Aerospace Engineering, University of Virginia, USA, 2006.
[7]           H.-m. FAN, F.-w. HONG, L.-d. Zhou, Y.-s. CHEN, Y. Liang, and Z.-m. LIU, "Design of implantable axial-flow blood pump and numerical studieson its performance," Journal of Hydrodynamics, Ser. B, vol. 21, pp. 445-452, 2009.
[8]           H. Wu, Z. Wang, and X. Lv, "Design and simulation of axial flow maglev blood pump," International Journal of Information Engineering and Electronic Business (IJIEEB), vol. 3, p. 42, 2011.
[9]           A. L. Throckmorton, J. Y. Kapadia, S. G. Chopski, S. S. Bhavsar, W. B. Moskowitz, S. D. Gullquist, et al., "Numerical, hydraulic, and hemolytic evaluation of an intravascular axial flow blood pump to mechanically support Fontan patients," Annals of biomedical engineering, vol. 39, pp. 324-336, 2011.
[10]         D. Carswell, D. McBride, T. Croft, A. Slone, M. Cross, and G. Foster, "A CFD model for the prediction of haemolysis in micro axial left ventricular assist devices," Applied Mathematical Modelling, vol. 37, pp. 4199-4207, 2013.
[11]         M. Koochaki and H. Niroomand-Oscuii, "A new design and computational fluid dynamics study of an implantable axial blood pump," Australasian Physical & Engineering Sciences in Medicine, vol. 36, pp. 417-422, 2013.
[12]         O. Balje, Turbomachines: John Wiley, 1981.
[13]         ANSYS Incorporated ANSYS CFX-Solver Theory Guide. Canonsburg, PA, 2010.
[14]         J. Anderson, H. G. Wood, P. E. Allaire, and D. B. Olsen, "Numerical analysis of blood flow in the clearance regionsof a continuous flow artificial heart pump," Artificial organs, vol. 24, pp. 492-500, 2000.
[15]         K. Takiura, T. Masuzawa, S. Endo, Y. Wakisaka, E. Tatsumi, Y. Taenaka, et al., "Development of Design Methods of a Centrifugal Blood Pump with In Vitro Tests, Flow Visualization, and Computational Fluid Dynamics: Results inHemolysis Tests," Artificial organs, vol. 22, pp. 393-398, 1998.
[16]         A. L. Throckmorton, A. Untaroiu, P. E. Allaire, H. G. Wood, G. P. Matherne, D. S. Lim, et al., "Computational analysisof an axial flow pediatric ventricular assist device," Artificial organs, vol. 28, pp. 881-891, 2004.
[17]         G. Heuser and R. Opitz, "A Couette viscometer for short time shearing of blood," Biorheology, vol. 17, pp. 17-24, 1979.
[18]         C. Bludszuweit, "Modelfor a general mechanical blood damage prediction," Artificial Organs, vol. 19, pp. 583-589, 1995.
[19]         O. Myagmar, Evaluation of CFD based hemolysis prediction methods: Rochester Institute Of Technology, 2011.
[20]         J. Apel, R. Paul, S. Klaus, T. Siess, and H. Reul, "Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics," Artificial Organs, vol. 25, pp. 341-347, 2001.
[21]         W. Chan, Y. Wong, Y. Ding, L. Chua, and S. Yu, "Numerical investigation of the effect of blade geometry on blood trauma in a centrifugal blood pump," Artificial organs, vol. 26, pp. 785-793, 2002.
[22]         T. Yano, K. Sekine, A. Mitoh, Y. Mitamura, E. Okamoto, D. W. Kim, et al., "An estimation method of hemolysis within an axial flow blood pumpby computational fluid dynamics analysis," Artificial organs, vol. 27, pp. 920-925, 2003.
 [23]        D. Arora, M. Behr, and M. Pasquali, "Hemolysis Estimation in a Centrifugal Blood Pump Using a Tensor‐based Measure," Artificial organs, vol. 30, pp. 539-547, 2006.
[24]         D. Zimpfer, P. Zrunek, W. Roethy, M. Czerny, H. Schima, L. Huber, et al., "Left ventricular assist devices decrease fixed pulmonary hypertension in cardiac transplant candidates," The Journal of thoracic and cardiovascular surgery, vol. 133, pp. 689-695, 2007.
[25]         E. U. Dexter, S. Aluri, R. R. Radcliffe, H. Zhu, D. D. Carlson, T. E. Heilman, et al., "In vivo demonstration of cavitation potential of a mechanical heart valve," ASAIO journal, vol. 45, pp. 436-441, 1999.