نوع مقاله : مقاله کامل پژوهشی

نویسنده

استادیار، گروه مهندسی پزشکی، دانشگاه صنعتی همدان، همدان، ایران

10.22041/ijbme.2021.138955.1636

چکیده

تصویربرداری مولکولی به روش تشدید مغناطیسی با ردیابی عامل­های کنتراست که اساس آن بر پایه‌ی تشدید مغناطیسی هسته­ای بنا نهاده شده، به دلیل رزولوشن مکانی مناسب و فناوری بی­ضرر به عنوان یک روش نوین تشخیصی آناتومی و عمل‌کردی در کاربردهای مختلف پزشکی مورد توجه قرار گرفته است. در اسکنر تشدید مغناطیسی با اعمال پالس اشباع الکترومغناطیسی عمدتا مستطیلی، طیف اسپکتروسکوپی معروف به طیف Z حاصل می­شود. در فرکانس­های متناظر با فرکانس لارمور در طیف Z دامنه­هایی ناشی از اشباع مستقیم آب و عامل­های کنتراست که معرف اثر انتقال اشباع به واسطه‌ی تبادل شیمیایی (CEST) است ایجاد می­شود. پدیده‌ی شیفت شیمیایی، ناهمگنی میدان مغناطیسی و نویز موجود در فرایند تصویربرداری ضمن تغییر موقعیت فرکانس­های لارمور در طیف Z، منجر به مخدوش شدن اثر CEST می­شود. عمدتا اثر این نویز با توزیع رایسین که در حالت حدی مطابق با توزیع گوسی است مدل می­شود. در این مقاله روش کارامدی جهت کاهش نویز از طیف Z و آشکارسازی پوش اثر CEST ارائه شده است. نویز­زدایی، با استفاده از خروجی مدل تحلیلی ناشی از حل معادلات بلاخ-مک­کانل و آشکارسازی اثر CEST از طریق محاسبه‌ی تابع درست‌نمایی بیزین صورت گرفته است. بررسی کارایی روش­ پیشنهادی برای حذف نویز و آشکارسازی اثر CEST روی طیف­های واقعی Z برگرفته از اسکنر تشدید مغناطیسی و داده‌های پارامتری حاصل از بافت انسان انجام شده است. عمل‌کرد روش پیشنهادی به طور متوسط با اندازه­گیری مجذور مربعات خطای نسبی بین طیف Z واقعی و نویزی در سیگنال به نویز 10 dB و تعداد مشاهدات 5 حدودا برابر با 4% به دست آمده است. مقدار خطای نوع اول (p-value) بر مبنای داده­های پارامتری زمانی که واریانس نویز از 008/0 و تعداد مشاهدات از 4 بیش‌تر باشد، کم‌تر از 05/0 به دست آمده است. هم‌چنین در این مقاله معیاری برای آشکارسازی اثر CEST بر مبنای عمل‌گر میانه­گیری جهت بررسی کارایی روش پیشنهادی متناسب با قدرت نویز و تعداد مشاهدات پیشنهاد شده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Detecting the CEST Effect through the Noisy Z-Spectrum based on Solving the Bloch-McConnell Equations

نویسنده [English]

  • Mohamad Reza Rezaeian

Assistant Professor, Biomedical Engineering Department, Hamedan University of Technology, Hamedan, Iran

چکیده [English]

Molecular magnetic resonance imaging by tracking contrast agents based on magnetic resonance of the nucleus is considered a novel anatomical and functional diagnostic method in various medical applications due to its good spatial resolution and safe technology. In a magnetic resonance scanner, a spectroscopic spectrum known as the Z-spectrum is obtained by applying a predominantly rectangular electromagnetic saturation pulse. At frequencies corresponding to the Larmor frequency, some amplitudes due to water saturation contrast factors are formed, representing saturation transfer’s effect due to chemical exchange (CEST). Chemical shifts, magnetic field heterogeneity and imaging process’s noise, while shifting the Larmore frequencies position, distorts the CEST effect. This noise is mainly modeled by the raisin distribution, which is an extent of Gaussian distribution. In this paper, an efficient method for reducing noise from the Z-spectrum and detecting the CEST effect is presented. Deionization is performed using the analytical model’s output resulting from solving the Bloch-McCannell equations and detecting the CEST effect by calculating the Bayesian likelihood function. The proposed method’s effectiveness for noise cancellation and detection the CEST effect was performed on real Z-spectra which is obtained from magnetic resonance scanners and data obtained from human tissue. The average performance of the proposed method is measured by relative mean square error between the real Z-spectrum and the noise in the signal to noise 10dB and the number of observations 5 was about four percent. The value of the first type of error (p-value) based on parametric data was less than 5% when the noise variance was more than 0.008 and the number of observations was more than 5. In this paper, a criterion for detecting the effect of CEST based on the mediation operator is proposed to evaluate the efficiency of the proposed method in proportion to the noise power and the number of observations.

کلیدواژه‌ها [English]

  • CEST Effect
  • Bayesian
  • Raisin Distribution
  • Signal to Noise
  • Saturation Transfer
  • Z-Spectrum
  1. V. Zijl, W. Lam, J. Xu, L.Knutsson,G. J. Stanisz, “Magnetization Transfer Contrast and Chemical Exchange Saturation Transfer MRI. Features and analysis of the field-dependent saturation spectrum”, Neuroimage, Vol. 168, pp. 222-241, 2018.
  2. Jin, S. Kim, “Approximated analytical characterization of the steady-state chemical exchange saturation transfer (CEST) signals”, Magnetic Resonance in Medicine, Vol. 82, no. 5, pp.1876-1889, 2019.
  3. رضاییان، محمدرضا، " تعیین کنتراست CEST به روش تحلیلی در تصویربرداری مولکولی تشدید مغناطیسی"، پردازش علائم و داده­ها، دوره 17، ص 71 تا 85، تهران، 1399
  4. Zaiss and P. Bachert, “Chemical exchange saturation transfer (CEST) and MR Z-spectroscopy in vivo: a review of theoretical approaches and methods,” Phys. Med. Biol, vol. 58, no. 22, pp. 221-269, 2013.
  5. Vinogradov, A. D Sherry, and R. E. Lenkinski, “CEST: from basic principles to applications, challenges and opportunities,” Journal of Magnetic Resonance, vol. 229, pp. 155-172, 2012.
  6. L. Desmond and G. J. Stanisz, “Understanding quantitative pulsed CEST in the presence of MT,” Mag111111netic Resonance in Medicine, vol. 67, no. 4, pp. 979-990, 2012.
  7. Zaiss, Z. Zu, J. Xu, P. Schuenke, D. F. Gochberg, J. C. Gore, M. E. Ladd and P. Bachert, “A combined analytical solution for chemical exchange saturation transfer and semi-solid magnetization transfer,” NMR in Biomed, vol. 28, no. 2, pp. 217-230, 2015.
  8. Manjon, P. Coupe and A. Buades, “MRI noise estimation and denoising using non-local PCA,” Medical Image analysis, vol. 22, no.1, pp. 35-47, 2015.
  9. Foi,”Noise estimation and removal in MR imaging: The variance –stabilization approach,” pp. 1809-1814, 2011.
  10. Zhu,. , Y. Li, J. G. Ibrahim, X. Shi, H. An, Y. Chen, W. Gao, W. Lin, D. B. Rowe, and B. S. Peterson, “Regression models for identifying noise sources in magnetic resonance imaging,” J. Am. Stat. Assoc. vol. 104, no. 486, pp. 623–637, 2009.
  11. Mohana, V.Krishnavenib, and Yanhui Guo, “A survey on the magnetic resonance image denoising methods,” Biomedical Signal Processing and Control, vol. 9, pp. 56– 69, 2014.
  12. Tang, Q. Sun, J. Liu, and Y. Cao, “An adaptive anisotropic diffusion filter for noise reduction in MR images,” in: Proceedings of IEEE International Conference on Mechatronics and Automation, Harbin, China, 2007, pp. 1299–1304.
  13. Lu, , C. Deng, Q. Liu, and J. Li, “Four order adaptive PDE method for MRI denoising,” in: Proceedings of IEEE 3rd International Conference on Bioinformatics and Biomedical Engineering, Beijing. 2009. pp. 1–4.
  14. V. Manjón, J. C. Carbonell-Caballero, J. J. Lull, G. García-Martí, L. Martí-Bonmatí, and M. Robles, “MRI denoising using non-local means,” Medical Image analysis, vol. 12, no. 4, pp. 514–523, 2008.
  15. Lee, J. J. Chung, J. Lee, S. G. Kim, J. H. Han, J. Park,” Model-based chemical exchange saturation transfer MRI for robust Z-spectrum analysis”, IEEE transaction on medical imaging, vol. 39, no. 2, pp. 283-293, 2020.
  16. Rajan, B. Jeurissen, J. Sijbers, and K. Kannan, “Denoising magnetic resonance images using fourth order complex diffusion,” in: Proceedings of IEEE 13thInternational Machine Vision and Image Processing Conference, Dublin. 2009.pp. 123–127.
  17. Breitling, A. Deshman, S. Goerke, A. Korzowski, K. Herz, M. E. Ladd, K. Scheffler, P. Bachert, M. Zaiss,”Adaptive denoising for chemical exchange saturation transfer MR imaging” NMR in biomedicine, vol. 32, no. 11, e4133. 2019.
  18. Sijbers and A. J. den Dekker, “Maximum likelihood estimation of signal amplitude and noise variance from MR data,” Magnetic Resonance in medicine, vol. 51, no. 3, pp. 586–594, 2004.
  19. V. M. Sagheer, S. N. George, “A review on medical image denoising algorithms” Biomedical signal processing and control, Vol. 61, 2020.
  20. Fan, F.Zhang.H. Fan, C. Zhang, ‘Brief review of image denoising techniques” Visual computing for industry biomedicine and art, Vol. 2, no. 7, pp. 2019.
  21. V. Manjon, P. Coupe, A. Buades, L. Collins, M. Robles,” New methods for MRI denoising based on sparseness and self-similarity” Medical Image Analysis, vol. 16. No. 1, pp. 18-27, 2012.
  22. Tong, R. Wolz, P. Coupe, J. V. Hajnal, D. Rueckert, ”Segmentation of MR images via discriminative dictionary learning and sparse coding Application to hippocampus labeling’ Neuroimage, vol. 76, pp. 11-23, 2013.
  23. Y. Zhou, E. Wang, J. S. Cheung, X. Zhang, G. Fulci, P. Z. Sun, “ Quantitative chemical exchange saturation transfer (CEST) MRI of glioma using image downsampling expedited adaptive least-squares (IDEAL) fitting” Scientific reports,vol. 7, no. 1, pp. 84. 2017.
  24. Rezaeian, M. R., Hossien-Zadeh, G. A., Soltanian-Zadeh, H., “Simultaneously optimizing power and duration of RF pulse in the paracest MRI”, Magnetic Resonance Imaging, Vol. 34, no. 6, pp. 743-753, 2016.
  25. Woeessner, S. Zhang, M. E. Merritt and A. D. Sherry, “Numerical solution of the Bloch equations provides insights into the optimum design of PARACEST agents for MRI,” Magnetic Resonance in medicine, vol.53, no.4, pp. 790-799, 2005.