نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده‌ی مهندسی پزشکی، دانشگاه صنعتی سهند، تبریز، ایران

2 استادیار، آزمایشگاه علوم اعصاب محاسباتی، دانشکده‌ی مهندسی پزشکی، دانشگاه صنعتی سهند، تبریز، ایران

10.22041/ijbme.2021.530841.1694

چکیده

بیماری پارکینسون یکی از رایج­ترین بیماری­های پیش­رونده­ی تدریجی است که با تاثیر بر سیستم عصبی مرکزی باعث بروز اختلالات راه­ رفتن می­شود. از آن‌جا که این بیماری قابل‌درمان نیست، تشخیص صحیح و به موقع آن می­تواند به آهسته کردن سیر پیش‌رفت بیماری، کاهش آسیب­های جسمی و ارتقای کیفیت زندگی بیماران کمک شایانی نماید. در این راستا توسعه­ی سیستم­های تشخیصی با عمل‌کرد سریع، کم‌هزینه و قابل اعتماد حائز اهمیت است. برای حل این مساله در این تحقیق  یک روش تشخیصی با استفاده از سیگنال نیروی عکس­العمل عمودی زمین که یک شاخص غیر­تهاجمی و مفید از نحوه‌ی کنترل حرکتی فراهم می­کند، ارائه شده است. این روش تشخیصی بر اساس تجزیه‌ی تعمیم­یافته‌ی مقدار تکین سیگنال و طبقه­بندهای k-نزدیک­تر­ین همسایگی (KNN) و شبکه‌ی عصبی احتمالی (PNN) است. عمل‌کرد این الگوریتم با استفاده از سیگنال راه رفتن 93 بیمار پارکینسون و 73 فرد سالم مورد ارزیابی قرار گرفته است. نتایج به دست آمده نشان می­دهد که ویژگی جدید متقارن ارائه شده قادر است بیماری پارکینسون را به کمک روش طبقه­بندی k-نزدیک‌ترین همسایگی و شبکه‌ی عصبی احتمالی به ترتیب با صحت 19/96% و 67/95%، حساسیت 02/97% و 35/93% و اختصاصیت 02/95% و 33/97% تشخیص دهد. از سوی دیگر این روش در تشخیص شدت بیماری نیز موفق به ارائه‌ی صحت 23/98% و 51/98%، حساسیت­ 5/93% و 100% و اختصاصیت 100% و 53/96% برای این دو طبقه­بند شده است. صحت بالای نتایج به دست آمده نشان دهنده‌ی قابلیت مناسب روش­ غیرتهاجمی و کم‌هزینه‌ی ارائه شده در تشخیص بیماری پارکینسون و تفکیک شدت آن است که استفاده از آن را در کاربردهای کلینیکی ممکن می­سازد.

کلیدواژه‌ها

عنوان مقاله [English]

Algebraic Analysis of Vertical Ground Reaction Force Signal for diagnosis and Differentiation of Parkinson's Disease Severity

نویسندگان [English]

  • Gisoo Fathi 1
  • Peyvand Ghaderyan 2

1 M.Sc. Student, Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran

2 Assistant Professor, Computational Neuroscience Laboratory, Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran

چکیده [English]

Parkinson’s Disease (PD) is one of the most common neurodegenerative diseases that cause abnormal gait patterns by affecting central nervous system. Since this disease is incurable, the reliable diagnosis can lead to slowing disease progression, reducing the risk of physical injuries and improving the quality of patient's life. In this regard, the development of fast, cost-effective and reliable detection systems is essential. This study has therefore proposed a detection method using vertical ground reaction force signals, which provide a non-invasive and useful index of the motor control function. It is based on generalized singular value decomposition, K-Nearest Neighbor (KNN) and Probabilistic Neural Network (PNN). The performance of the algorithm has been evaluated by gait signal of 93 individuals with PD and 73 healthy controls. The results have demonstrated that the proposed new symmetric feature is able to achieve 96.19% and 95.67% accuracy rates, 97.22% and 93.35% sensitivity rates, 95.02% and 97.33% specificity rates using the KNN and PNN classifiers, respectively. Furthermore, average accuracy rates of 98.23% and 98.51%, sensitivity rates of 93.5% and 100%, specificity rates of 100% and 96.53% have been obtained for stage classification using these two classifiers. The obtained high average accuracy rates have confirmed the promising capability of the proposed non-invasive and cost-effective method in PD detection and stage classification, which makes it suitable for clinical applications.

کلیدواژه‌ها [English]

  • Parkinson’s Disease
  • K-Nearest Neighbor
  • Probabilistic Neural Network
  • Symmetric Feature
  • Vertical Ground Reaction Force
  1. Aşuroğlu, T., et al., Parkinson's disease monitoring from gait analysis via foot-worn sensors. Biocybernetics and Biomedical Engineering, 2018. 38(3): p. 760-772.
  2. Castaño-Pino, Y.J., et al., Using Wavelets for Gait and Arm Swing Analysis. Wavelet Transform and Complexity, 2019.
  3. Tysnes, O.-B. and A. Storstein, Epidemiology of Parkinson’s disease. Journal of Neural Transmission, 2017. 124(8): p. 901-905.
  4. Golbe, L.I., M.H. Mark, and J. Sage, Parkinson's Disease Handbook. 2009: American Parkinson Disease Association.
  5. Nonnekes, J., et al., Neurological disorders of gait, balance and posture: a sign-based approach. Nature Reviews Neurology, 2018. 14(3): p. 183.
  6. Prabhu, P., et al., Classification of gait signals into different neurodegenerative diseases using statistical analysis and recurrence quantification analysis. Pattern Recognition Letters, 2018.
  7. Goyal, J., P. Khandnor, and T.C. Aseri, Classification, Prediction, and Monitoring of Parkinson’s disease using Computer Assisted Technologies: A Comparative Analysis. Engineering Applications of Artificial Intelligence, 2020. 96: p. 103955.
  8. Ghaderyan, P. and G. Fathi, Inter-limb time-varying singular value: a new gait feature for Parkinson’s disease detection and stage classification. Measurement, 2021: p. 109249.
  9. Joshi, D., A. Khajuria, and P. Joshi, An automatic non-invasive method for Parkinson's disease classification. Computer methods and programs in biomedicine, 2017. 145: p. 135-145.
  10. Schlögl, A., M. Slater, and G. Pfurtscheller. Presence research and EEG. in Proceedings of the 5th International Workshop on Presence. 2002.
  11. Benba, A., et al. Voiceprints analysis using MFCC and SVM for detecting patients with Parkinson's disease. in 2015 International conference on electrical and information technologies (ICEIT). 2015. IEEE.
  12. Deharab, E.D. and P. Ghaderyan. Parkinson's Disease Detection Using Dynamic Writing Traces Warping. in 2020 28th Iranian Conference on Electrical Engineering (ICEE). 2020. IEEE.
  13. Beyrami, S.M.G. and P. Ghaderyan, A robust, cost-effective and non-invasive computer-aided method for diagnosis three types of neurodegenerative diseases with gait signal analysis. Measurement, 2020. 156: p. 107579.
  14. Ghaderyan, P. and S.M.G. Beyrami, Neurodegenerative diseases detection using distance metrics and sparse coding: A new perspective on gait symmetric features. Computers in Biology and Medicine, 2020: p. 103736.
  15. Zeng, W., et al., Classification of gait patterns between patients with Parkinson’s disease and healthy controls using phase space reconstruction (PSR), empirical mode decomposition (EMD) and neural networks. Neural Networks, 2019. 111: p. 64-76.
  16. Ren, P., et al., Gait rhythm fluctuation analysis for neurodegenerative diseases by empirical mode decomposition. IEEE Transactions on Biomedical Engineering, 2016. 64(1): p. 52-60.
  17. Alkhatib, R., et al., Machine Learning Algorithm for Gait Analysis and Classification on Early Detection of Parkinson. IEEE Sensors Letters, 2020.
  18. Viteckova, S., et al., Gait symmetry measures: A review of current and prospective methods. Biomedical Signal Processing and Control, 2018. 42: p. 89-100.
  19. Bentbib, A.H., A. Kanber, and K. Lachhab, Subspace iteration method for generalized singular values. Annals of the University of Craiova-Mathematics and Computer Science Series, 2019. 46(1): p. 78-89.
  20. Bai, Z., CSD, GSVD, their applications and computations. 1992.
  21. Alter, O., P.O. Brown, and D. Botstein, Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms. Proceedings of the National Academy of Sciences, 2003. 100(6): p. 3351-3356.
  22. El Abbadi, N.K., Face Recognition based on GSVD. International Journal of Computer Applications, 2015. 114(12).
  23. Doclo, S. and M. Moonen, GSVD-based optimal filtering for single and multimicrophone speech enhancement. IEEE Transactions on signal processing, 2002. 50(9): p. 2230-2244.
  24. Bradley, M.W., et al., GSVD-and tensor GSVD-uncovered patterns of DNA copy-number alterations predict adenocarcinomas survival in general and in response to platinum. APL bioengineering, 2019. 3(3): p. 036104.
  25. Chu, K.-W.E., Singular value and generalized singular value decompositions and the solution of linear matrix equations. Linear Algebra and Its Applications, 1987. 88: p. 83-98.
  26. Golub, G.H. and C.F. Van Loan, Matrix computations. Vol. 3. 2013: JHU press.
  27. Howland, P., M. Jeon, and H. Park, Structure preserving dimension reduction for clustered text data based on the generalized singular value decomposition. SIAM Journal on Matrix Analysis and Applications, 2003. 25(1): p. 165-179.
  28. Björck, Å., Numerical methods for least squares problems. 1996: SIAM.
  29. Van Loan, C.F., Generalizing the singular value decomposition. SIAM Journal on numerical Analysis, 1976. 13(1): p. 76-83.
  30. Hansen, P.C., Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion. 1998: SIAM.
  31. Van Huffel, S. and J. Vandewalle, Analysis and Properties of the Generalized Total Least Squares Problem $ AXapprox B $ When Some or All Columns in $ A $ are Subject to Error. SIAM Journal on Matrix Analysis and Applications, 1989. 10(3): p. 294.
  32. Speiser, J.M. and C. Van Loan. Signal processing computations using the generalized singular value decomposition. in Real-Time Signal Processing VII. 1984. International Society for Optics and Photonics.
  33. Park, C.H. and H. Park, A relationship between linear discriminant analysis and the generalized minimum squared error solution. SIAM Journal on Matrix Analysis and Applications, 2005. 27(2): p. 474-492.
  34. Betcke, T., The generalized singular value decomposition and the method of particular solutions. SIAM Journal on Scientific Computing, 2008. 30(3): p. 1278-1295.
  35. Wu, C., H. Jiang, and P. Wang, Education quality detection method based on the probabilistic neural network algorithm. Diagnostyka, 2020. 21.
  36. Ray, S. A quick review of machine learning algorithms. in 2019 International conference on machine learning, big data, cloud and parallel computing (COMITCon). 2019. IEEE.
  37. Deng, Z., et al., Efficient kNN classification algorithm for big data. Neurocomputing, 2016. 195: p. 143-148.
  38. Frenkel-Toledo, S., et al., Effect of gait speed on gait rhythmicity in Parkinson's disease: variability of stride time and swing time respond differently. Journal of neuroengineering and rehabilitation, 2005. 2(1): p. 23.
  39. Frenkel‐Toledo, S., et al., Treadmill walking as an external pacemaker to improve gait rhythm and stability in Parkinson's disease. Movement disorders: official journal of the Movement Disorder Society, 2005. 20(9): p. 1109-1114.
  40. Hausdorff, J.M., et al., Rhythmic auditory stimulation modulates gait variability in Parkinson's disease. European Journal of Neuroscience, 2007. 26(8): p. 2369-2375.
  41. Yogev, G., et al., Dual tasking, gait rhythmicity, and Parkinson's disease: which aspects of gait are attention demanding? European journal of neuroscience, 2005. 22(5): p. 1248-1256.
  42. Abdulhay, E., et al., Gait and tremor investigation using machine learning techniques for the diagnosis of Parkinson disease. Future Generation Computer Systems, 2018. 83: p. 366-373.
  43. Su, B., et al., Characterizing gait asymmetry via frequency sub-band components of the ground reaction force. Biomedical Signal Processing and Control, 2015. 18: p. 56-60.
  44. Zeng, W. and C. Wang, Classification of neurodegenerative diseases using gait dynamics via deterministic learning. Information Sciences, 2015. 317: 246-258.
  45. Wasserman, P.D., Advanced methods in neural computing. 1993: John Wiley & Sons, Inc.
  46. Lee, S.-H. and J.S. Lim, Parkinson’s disease classification using gait characteristics and wavelet-based feature extraction. Expert Systems with Applications, 2012. 39(8): p. 7338-7344.
  47. Alam, M.N., et al., Vertical ground reaction force marker for Parkinson’s disease. PloS one, 2017. 12(5): p. e0175951.
  48. Balaji, E., et al., Data-driven gait analysis for diagnosis and severity rating of Parkinson’s disease. Medical Engineering & Physics, 2021. 91: p. 54-64.
  49. Daliri, M.R., Chi-square distance kernel of the gaits for the diagnosis of Parkinson's disease. Biomedical Signal Processing and Control, 2013. 8(1): p. 66-70.
  50. Khoury, N., et al., Data-driven based approach to aid Parkinson’s disease diagnosis. Sensors, 2019. 19(2): p. 242.
  51. Wu, Y., et al., Measuring signal fluctuations in gait rhythm time series of patients with Parkinson's disease using entropy parameters. Biomedical Signal Processing and Control, 2017. 31: p. 265-271.
  52. Ertuğrul, Ö.F., et al., Detection of Parkinson's disease by shifted one dimensional local binary patterns from gait. Expert Systems with Applications, 2016. 56: p. 156-163.
  53. Zhang, Y., et al. Pathological gait detection of Parkinson's disease using sparse representation. in 2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA). 2013. IEEE.
  54. Perumal, S.V. and R. Sankar, Gait and tremor assessment for patients with Parkinson’s disease using wearable sensors. Ict Express, 2016. 2(4): p. 168-174.
  55. Zeng, W., et al., Parkinson's disease classification using gait analysis via deterministic learning. Neuroscience letters, 2016. 633: p. 268-278.
  56. Jane, Y.N., H.K. Nehemiah, and K. Arputharaj, A Q-backpropagated time delay neural network for diagnosing severity of gait disturbances in Parkinson’s disease. Journal of biomedical informatics, 2016. 60: p. 169-176.
  57. Medeiros, L., et al. A gait analysis approach to track parkinson's disease evolution using principal component analysis. in 2016 IEEE 29th International Symposium on Computer-Based Medical Systems (CBMS). 2016. IEEE.
  58. Shrivastava, P., et al., A survey of nature-inspired algorithms for feature selection to identify Parkinson's disease. Computer methods and programs in biomedicine, 2017. 139: p. 171-179.
  59. Alafeef, M. and M. Fraiwan, On the diagnosis of idiopathic Parkinson’s disease using continuous wavelet transform complex plot. Journal of Ambient Intelligence and Humanized Computing, 2019. 10(7): p. 2805-2815.
  60. Yurdakul, O.C., M. Subathra, and S.T. George, Detection of Parkinson’s Disease from gait using Neighborhood Representation Local Binary Patterns. Biomedical Signal Processing and Control, 2020. 62: p. 102070.
  61. Zhao, A., et al., A hybrid spatio-temporal model for detection and severity rating of Parkinson’s Disease from gait data. Neurocomputing, 2018. 315: p. 1-8.
  62. Liu, X., et al., A dual-branch model for diagnosis of Parkinson’s disease based on the independent and joint features of the left and right gait. Applied Intelligence, 2021: p. 1-12.
  63. Noella, R.N., D. Gupta, and J. Priyadarshini, Diagnosis of Parkinson’s disease using Gait Dynamics and Images. Procedia Computer Science, 2019. 165: p. 428-434.
  64. El Maachi, I., G.-A. Bilodeau, and W. Bouachir, Deep 1D-Convnet for accurate Parkinson disease detection and severity prediction from gait. Expert Systems with Applications, 2020. 143: p. 113075.
  65. Balaji, E., D. Brindha, and R. Balakrishnan, Supervised machine learning based gait classification system for early detection and stage classification of Parkinson’s disease. Applied Soft Computing, 2020. 94: p. 106494.
  66. Pei, X., H. Fan, and Y. Tang, Temporal pyramid attention‐based spatiotemporal fusion model for Parkinson's disease diagnosis from gait data. IET Signal Processing, 2021. 15(2): p. 80-87.
  67. Aydın, F. and Z. Aslan, Recognizing Parkinson’s disease gait patterns by vibes algorithm and Hilbert-Huang transform. Engineering Science and Technology, an International Journal, 2021. 24(1): p. 112-125.
  68. Jiang, Q., et al., Automatic detection for ship target in SAR imagery using PNN-model. Canadian Journal of Remote Sensing, 2000. 26(4): p. 297-305.
  69. Mao, K.Z., K.-C. Tan, and W. Ser, Probabilistic neural-network structure determination for pattern classification. IEEE Transactions on neural networks, 2000. 11(4): p. 1009-1016.
  70. Tsai, C.-Y., On detecting nonlinear patterns in discriminant problems. Information Sciences, 2006. 176(7): 772-798.
  71. Sa'adah, S. and M.S. Pratiwi. Classification of Customer Actions on Digital Money Transactions on PaySim Mobile Money Simulator using Probabilistic Neural Network (PNN) Algorithm. in 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI). 2020. IEEE.
  72. Cacoullos, T., Estimation of a multivariate density. 1964, University of Minnesota.
  73. Narayan, Y., SEMG signal classification using KNN classifier with FD and TFD features. Materials Today: Proceedings, 2021. 37: p. 3219-3225.
  74. Babu, T.A. and P.R. Kumar. Characterization and classification of uterine magnetomyography signals using KNN classifier. in 2018 Conference on Signal Processing And Communication Engineering Systems (SPACES). 2018. IEEE.
  75. Greche, L., et al. Comparison between Euclidean and Manhattan distance measure for facial expressions classification. in 2017 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS). 2017. IEEE.
  76. Bharate, A.A. and M. Shirdhonkar. Classification of Grape Leaves using KNN and SVM Classifiers. in 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). 2020. IEEE.