نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده‌ی مهندسی پزشکی، دانشگاه صنعتی امیرکبیر، تهران، ایران

2 استادیار، دانشکده‌ی مهندسی پزشکی، دانشگاه صنعتی امیرکبیر، تهران، ایران

10.22041/ijbme.2021.531241.1695

چکیده

تحریک الکتریکی روی­ پوستی تارهای اعصاب محیطی، همواره یکی از زمینه­های مهم پژوهشی بوده است. مطالعات زیادی قابلیت مسدودسازی هدایت تارهای عصبی توسط به کارگیری جریان­های متناوب فرکانس بالا (5 تا 20 کیلوهرتز) را نشان می­دهند. با توجه به این که همواره تحریک تارهای باریک­تر، با آتش کردن و همراهی تارهای قطورتر همراه است، در این پژوهش با الهام گرفتن از این قابلیت، فضاهای جریانی برای تحریک انتخابی دسته‌ی تارهای مختلف عصبی، بدون فعال شدن دیگر تارها به دست آمده است. منظور از فضای تحریک، بخشی از نمودار شدت جریان-فرکانس است که با انتخاب پارامترهای تحریک در این ناحیه، تنها تارهای به خصوصی تحریک می­شوند. برای انجام شبیه­سازی­ها از مدل تار عصبی McIntyre استفاده شده که مدل پمپ سدیم-پتاسیم نیز به آن افزوده شده و اثرات آن بررسی شده است. از یک الکترود تک‌قطبی که جریانی نقطه­ای در فواصل مختلف از تارهای عصبی ایجاد می­کند استفاده شده است. ناحیه­ی مناسب فرکانسی برای تحریک تارهای مختلف بالاتر از 5 کیلوهرتز بوده و جریان مناسب برای تحریک انتخابی تارهای Aδ و Aβ به ترتیب با دو معادله­ی درجه‌ی 2 و 3 که بر فضای میانی آستانه­ی تحریک و انسداد هر تار عصبی برازش شده، به دست آمده است. هم‌چنین جریان تحریک برای تارهای Aδ از حدود 8/0 تا 8/1 میلی­آمپر و برای تارهای Aβ از حدود 55/0 تا 95/0 میلی­آمپر بسته به فرکانس متغیر است. در تمام شبیه­سازی­ها از شکل موج سینوسی استفاده شده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Determination of Proper Parameters for Selective Electrical Stimulation of Myelinated Peripheral Nerve Fibers with HFAC using Computational Simulation

نویسندگان [English]

  • Mohsen Kamelian Rad 1
  • Mohammad Ali Ahmadi Pajouh 2
  • Mehrdad Saviz 2

1 M.Sc. Student, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran

2 Assistant Professor, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran

چکیده [English]

Transcutaneous electrical stimulation of peripheral nerve fibers has always been an important field of research. Many studies indicate the possibility to block the conduction of nerve fibers by using high frequency alternating currents (HFAC). According to the fact that the stimulation of narrower fibers is always accompanied by activation of thicker fibers, in this study, current regions for selective stimulation of different nerve fibers without activating other fibers have been obtained. This success is achieved through the nerve conduction block using HFAC (5-20 KHz). Stimulation current regions is a part of the intensity-frequency diagram which by choosing the excitation parameters in this area, only some target fibers are stimulated according to their diameters. The McIntyre nerve fiber model was used to perform these simulations; The sodium-potassium pump model has also been added to it and its effects have been investigated. A unipolar electrode is considered which acts as a point current source at different distances from the nerve fibers, and selective excitation spaces are obtained for the Aδ and Aβ fibers. The appropriate frequency range for excitation of different fibers is 5 kHz and above, while the desired current for selective excitation of Aδ and Aβ fibers is given by two polynomial equations of order 2 and 3, respectively, which are fitted to the middle of selective parameter space of each nerve fiber. Also, the excitation current varies from about 0.8 to 1.8 mA for Aδ fibers and from about 0.55 to 0.95 mA for Aβ fibers. In all of the simulations mentioned in this article, the sinusoidal waveform is used.

کلیدواژه‌ها [English]

  • Selective Stimulation of Nerves
  • HFAC
  • Computational Simulation
  • Sodium-Potassium Pump
  1. A. Hokanson, C. L. Langdale, A. Sridhar, P. Milliken, and W. M. Grill, “State-dependent bioelectronic interface to control bladder function,” Sci. Rep., vol. 11, no. 1, Dec. 2021
  2. J. Hwang, M. S. Lee, S. H. Jung, S. H. Ahn, and O. Y. Kwon, “Effect of pelvic floor electrical stimulation on diaphragm excursion and rib cage movement during tidal and forceful breathing and coughing in women with stress urinary incontinence: A randomized controlled trial,” Medicine (Baltimore)., vol. 100, no. 1, p. e24158, Jan. 2021
  3. W. Wainwright, L. C. Burgess, and R. G. Middleton, “Does Neuromuscular Electrical Stimulation Improve Recovery Following Acute Ankle Sprain? A Pilot Randomised Controlled Trial.,” Clin. Med. Insights. Arthritis Musculoskelet. Disord., vol. 12, p. 1179544119849024, Jan. 2019
  4. Hugosdottir, C. D. Mørch, O. K. Andersen, T. Helgason, and L. Arendt-Nielsen, “Preferential activation of small cutaneous fibers through small pin electrode also depends on the shape of a long duration electrical current,” BMC Neurosci., vol. 20, no. 1, pp. 1–11, 2019
  5. ا.مهنام، س.م.پورمیرجعفری، س.م.ر.هاشمی گلپایگانی؛ "تاثیر پارامترهای پیش‌پالس کاتدی در تحریک انتخابی فیبرهای مایلین‌دار و استخراج شکل موج جدیدی برای تحریک الکتریکی انتخابی به کمک شبیه‌سازی تحریک الکتریکی"؛ مجله­ی مهندسی پزشکی زیستی، پاییز 1383، دوره 1، شماره 1، صفحه 65 تا 76
  6. Tigerholm, T. N. Hoberg, X. D. Brønnum, M. Vittinghus, X. K. S. Frahm, and C. D. Mørch, “Small and large cutaneous fibers display different excitability properties to slowly increasing ramp pulses,” J Neurophysiol, pp. 883–894, 2020
  7. Joseph and R. J. Butera, “High-frequency stimulation selectively blocks different types of fibers in frog sciatic nerve,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 19, no. 5, pp. 550–557, Oct. 2011
  8. L. Kilgore and N. Bhadra, “Nerve conduction block utilising high-frequency alternating current,” Med. Biol. Eng. Comput., vol. 42, no. 3, pp. 394–406, May 2004
  9. Bhadra, K. Kilgore, and K. J. Gustafson, “High frequency electrical conduction block of the pudendal nerve,” J. Neural Eng., vol. 3, no. 2, pp. 180–187, Jun. 2006
  10. Bhadra and K. L. Kilgore, “High-frequency electrical conduction block of mammalian peripheral motor nerve,” Muscle and Nerve, vol. 32, no. 6, pp. 782–790, Dec. 2005
  11. R. Bowman and D. R. McNeal, “Response of single alpha motoneurons to high-frequency pulse trains: Firing behavior and conduction block phenomenon,” Stereotact. Funct. Neurosurg., vol. 49, no. 3, pp. 121–138, 1986
  12. A. Tanner, “Reversible blocking of nerve conduction by alternating-current excitation,” Nature, vol. 195, no. 4842, pp. 712–713, 1962
  13. Yi and W. M. Grill, “Kilohertz waveforms optimized to produce closed-state Na+ channel inactivation eliminate onset response in nerve conduction block,” PLoS Comput. Biol., vol. 16, no. 6, Jun. 2020
  14. Bhadra, E. A. Lahowetz, S. T. Foldes, and K. L. Kilgore, “Simulation of high-frequency sinusoidal electrical block of mammalian myelinated axons,” J. Comput. Neurosci., vol. 22, no. 3, pp. 313–326, 2007
  15. آ ع. آریانفر، ا. مهنام؛ «‫‫شبیه­سازی ‫انسداد هدایت عصب بوسیله اعمال جریان متناوب فرکانس بالا با شکل موج مربعی نامتقارن و بررسی مکانیزم اثر آن»؛ پژوهش در علوم توانبخشی؛ فروردین و اردیبهشت 1393 , دوره 10 , شماره  1؛ صفحه 99 تا 112
  16. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” J. Physiol., vol. 117, no. 4, pp. 500–544, Aug. 1952
  17. Siciliano, “The Hodgkin-Huxley model - Its extensions , analysis and numerics.,” p. 41, 2012.
  18. R. McNeal, “Analysis of a Model for Excitation of Myelinated Nerve,” IEEE Trans. Biomed. Eng., vol. BME-23, no. 4, pp. 329–337, 1976
  19. S. Chiu, S. Y., J. M. Ritchie, R. B. Rogart, “A quantitative descritpion of membrane currents in rabbit myelinated nerve,” J. Physiol., vol. 292, pp. 149–166, 1979.
  20. C. McIntyre, A. G. Richardson, and W. M. Grill, “Modeling the excitability of mammalian nerve fibers: Influence of afterpotentials on the recovery cycle,” J. Neurophysiol., vol. 87, no. 2, pp. 995–1006, 2002
  21. A. Halter and J. W. Clark, “A distributed-parameter model of the myelinated nerve fiber,” J. Theor. Biol., vol. 148, no. 3, pp. 345–382, 1991
  22. M. Faber, J. Silva, L. Livshitz, and Y. Rudy, “Kinetic properties of the cardiac L-type Ca2+ channel and its role in myocyte electrophysiology: A theoretical investigation,” Biophys. J., vol. 92, no. 5, pp. 1522–1543, 2007
  23. A. Whalley, S. Walters, and K. Hammond, “Molecular Cell Biology,” in Molecular Medicine for Clinicians, W. H. Freeman, 4th edition, 2018
  24. Purves et al., “Functional Properties of the Na+/K+ Pump,” 2001, Accessed: Feb. 18, 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK10857/.
  25. “Sodium and Potassium Concentrations Do Not Change during an Action Potential - Neuronal Action Potential - PhysiologyWeb.” https://www.physiologyweb.com/lecture_notes/neuronal_action_potential/neuronal_action_potential_na_and_k_concentrations_do_not_change_during_an_action_potential.html