نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه مهندسی پزشکی بیوالکتریک، دانشکده‌ی مهندسی برق، دانشگاه شاهد، تهران، ایران

2 استاد، گروه مهندسی پزشکی بیوالکتریک، دانشکده‌ی مهندسی برق، دانشگاه شاهد، تهران، ایران

10.22041/ijbme.2022.546327.1747

چکیده

برای برقراری ارتباط با محیط زندگی که همیشه در حال تغییر ­است، مغز مدام به تولید و به‌­روزرسانی انتظارات مربوط به رویدادهای پیش رو و تخمین آن برای پاسخ­های حسی و حرکتی عصبی متناظر با آن نیاز دارد. هدف از این مطالعه بررسی ارتباطات در درک­ زمان در دو حالت ­قابل پیش­بینی و غیر­قابل پیش­بینی است. داده­های مورد استفاده در این پژوهش، سیگنال­های EEG ثبت شده از پایگاه داده‌ی موجود ­شامل آزمایشی روی 29 فرد سالم در دو حالت قابل پیش­بینی و غیرقابل پیش­بینی و در چهار تاخیر 83، 150، 400، 800 میلی­ثانیه برای هر فرد می­باشد. به منظور تخمین ارتباط عمل‌کردی از روی سیگنال­های مغزی از روش شاخص تاخیر­ فاز (PLI) استفاده شده است. این روش برای آشکارسازی درک ­زمان در دو حالت­ رویدادهای­ قابل پیش­بینی و غیرقابل پیش­بینی مورد استفاده قرار گرفته است. ابتدا به مقایسه‌ی چهار تاخیر در هر حالت پرداخته شده و نشان داده شده که بیش‌تر تمایز در باندهای گاما، بتا و تتا بوده است. همچنین تفاوت معنادار بین تاخیرها در حالت قابل پیش­بینی نسبت به حالت غیرقابل پیش­بینی بیشتر بوده است. سپس به بررسی اختلافات بین دو حالت در هر تاخیر پرداخته شده که نتایج نشان دهنده‌ی اختلاف معنادار در تمام تاخیرها بوده است. باند آلفا در حالت ­غیر­قابل پیش­بینی در تاخیر 400 میلی­ثانیه تعداد ارتباطات بین نواحی پس­سری ­و­ گیج‌گاهی بیش‌تر و قوی­تر ­شده و هم‌چنین میانگین ارتباطات غیرقابل پیش­بینی از ­قابل پیش­بینی بیش‌تر بوده است. باند دلتا در تاخیرهای 150، 400 و 800 میلی­ثانیه ارتباط بین نواحی مرکزی ­و ­پیشانی وجود ­داشته در حالی که در تاخیر 83 میلی­ثانیه ارتباط قوی بین نواحی مرکزی ­و ­جلوپیشانی بوده است. نیم‌کره­ی راست جلوپیشانی در درک زمان مهم است. در طولانی­ترین تاخیر (800 میلی‌ثانیه) ارتباطات باندهای دلتا، تتا و بتا در هر دو حالت نسبت به سایر تاخیرها کاهش یافته است.     

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Representation of Functional Connectivity of Brain Regions from EEG Signals for Investigating the Discrimination in Temporal Patterns of Visual Events

نویسندگان [English]

  • Tahereh Taleei 1
  • Ali Motie Nasrabadi 2

1 MSc, Biomedical Engineering Department, Electrical Engineering Faculty, Shahed University, Tehran, Iran

2 Professor, Biomedical Engineering Department, Electrical Engineering Faculty, Shahed University, Tehran, Iran

چکیده [English]

To interact with such an ever-changing environment in which we live, our brain requires to continuously generate and update expectations about relevant upcoming events and their estimation for the corresponding sensory and motor responses. The goal of this study is to investigate the connectivity in time perception in the two predictable and unpredictable conditions. The data needed for the study from EEG signals recorded from the existing database that included an experiment was conducted on 29 healthy subjects in the two predictable and unpredictable conditions and in 4 delays of 83, 150, 400, 800 ms for each person was done. To estimate the functional connectivity between brain regions, we used the phase lag index method. This method is used to detect time perception in two conditions, predictable and unpredictable events. Initially, by comparing the two conditions in 4 delays was shown that more of the differences were in the gamma, beta, and theta bands. Also, the significant difference between the delays in the predictable condition was greater than the unpredictable condition. Then, the difference between the two conditions in each delay was discussed. The results showed a significant difference in all delays. The alpha band in the unpredictable condition in 400-ms delay, the number of connectivity between occipital and temporal regions was increased and stronger, and also the mean of the unpredictable connectivity was higher than predictable condition. In the delta band for 150, 400 and 800-ms delays, there was connectivity between the central and frontal regions, whereas in 83-ms-delay there was stronger connectivity between the central and prefrontal regions. The right hemisphere of the prefrontal is important in time perception. At the longest delay (800 ms), in three bands, delta, theta, and beta, connectivity decreased in both conditions compared to the other delays.

کلیدواژه‌ها [English]

  • EEG Signals
  • Time Perception
  • Functional Connectivity
  • Phase Lag Index
  1. A. Asadi-Pooya, D. Dlugos, C. Skidmore, and M. R. Sperling, "Atlas of electroencephalography," Epileptic Disorders, vol. 19, no. 3, pp. 384-384, 2017.
  2. Mohammad-Rezazadeh, J. Frohlich, S. K. Loo, and S. S. Jeste, "Brain connectivity in autism spectrum disorder," Current opinion in neurology, vol. 29, no. 2, p. 137, 2016.
  3. M. Cover and J. A. Thomas, Elements of information theory. John Wiley & Sons, 2012.
  4. Van Mierlo et al., "Functional brain connectivity from EEG in epilepsy: Seizure prediction and epileptogenic focus localization," Progress in neurobiology, vol. 121, pp. 19-35, 2014.
  5. Vinck, R. Oostenveld, M. Van Wingerden, F. Battaglia, and C. M. Pennartz, "An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias," Neuroimage, vol. 55, no. 4, pp. 1548-1565, 2011.
  6. -W. Dictionary, "New York: Merriam-Webster," Merriam-Webster. com. Web, vol. 14, 2016.
  7. Webster, "Learner’s dictionary," ed, 2016.
  8. R. Gallistel and J. Gibbon, "Time, rate, and conditioning," Psychological review, vol. 107, no. 2, p. 289, 2000.
  9. Pasquereau and R. S. Turner, "Dopamine neurons encode errors in predicting movement trigger occurrence," Journal of neurophysiology, vol. 113, no. 4, pp. 1110-1123, 2015.
  10. M. Cravo, G. Rohenkohl, V. Wyart, and A. C. Nobre, "Temporal expectation enhances contrast sensitivity by phase entrainment of low-frequency oscillations in visual cortex," Journal of Neuroscience, vol. 33, no. 9, pp. 4002-4010, 2013.
  11. Lakatos, G. Karmos, A. D. Mehta, I. Ulbert, and C. E. Schroeder, "Entrainment of neuronal oscillations as a mechanism of attentional selection," science, vol. 320, no. 5872, pp. 110-113, 2008.
  12. Rohenkohl, I. C. Gould, J. Pessoa, and A. C. Nobre, "Combining spatial and temporal expectations to improve visual perception," Journal of vision, vol. 14, no. 4, pp. 8-8, 2014.
  13. Janssen and M. N. Shadlen, "A representation of the hazard rate of elapsed time in macaque area LIP," Nature neuroscience, vol. 8, no. 2, pp. 234-241, 2005.
  14. Jazayeri and M. N. Shadlen, "Temporal context calibrates interval timing," Nature neuroscience, vol. 13, no. 8, p. 1020, 2010.
  15. K. Darlington et al., "Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim," Science, vol. 280, no. 5369, pp. 1599-1603, 1998.
  16. Muller and A. C. Nobre, "Flow of time: perceiving the passage of time: neural possibilities," Annals of the New York Academy of Sciences, vol. 1326, no. 1, p. 60, 2014.
  17. P. Perrett, "Temporal discrimination in the cerebellar cortex during conditioned eyelid responses," Experimental brain research, vol. 121, no. 2, pp. 115-124, 1998.
  18. Tanaka, "Cognitive signals in the primate motor thalamus predict saccade timing," Journal of Neuroscience, vol. 27, no. 44, pp. 12109-12118, 2007.
  19. I. Leon and M. N. Shadlen, "Representation of time by neurons in the posterior parietal cortex of the macaque," Neuron, vol. 38, no. 2, pp. 317-327, 2003.
  20. D. Brody, A. Hernández, A. Zainos, and R. Romo, "Timing and neural encoding of somatosensory parametric working memory in macaque prefrontal cortex," Cerebral cortex, vol. 13, no. 11, pp. 1196-1207, 2003.
  21. Genovesio, S. Tsujimoto, and S. P. Wise, "Neuronal activity related to elapsed time in prefrontal cortex," Journal of Neurophysiology, vol. 95, no. 5, pp. 3281-3285, 2006.
  22. Genovesio, S. Tsujimoto, and S. P. Wise, "Feature-and order-based timing representations in the frontal cortex," Neuron, vol. 63, no. 2, pp. 254-266, 2009.
  23. i. Oshio, A. Chiba, and M. Inase, "Temporal filtering by prefrontal neurons in duration discrimination," European Journal of Neuroscience, vol. 28, no. 11, pp. 2333-2343, 2008.
  24. A. Lebedev, J. E. O'doherty, and M. A. Nicolelis, "Decoding of temporal intervals from cortical ensemble activity," Journal of neurophysiology, vol. 99, no. 1, pp. 166-186, 2008.
  25. L. Harrington, K. Y. Haaland, and R. T. Knight, "Cortical networks underlying mechanisms of time perception," Journal of Neuroscience, vol. 18, no. 3, pp. 1085-1095, 1998.
  26. S. Matell, W. H. Meck, and C. Lustig, "Not “just” a coincidence: Frontal‐striatal interactions in working memory and interval timing," Memory, vol. 13, no. 3-4, pp. 441-448, 2005.
  27. Toosi, E. K. Tousi, and H. Esteky, "Learning temporal context shapes prestimulus alpha oscillations and improves visual discrimination performance," Journal of Neurophysiology, vol. 118, no. 2, pp. 771-777, 2017.
  28. G. Rosenblum, A. S. Pikovsky, and J. Kurths, "Phase synchronization of chaotic oscillators," Physical review letters, vol. 76, no. 11, p. 1804, 1996.
  29. J. Stam, G. Nolte, and A. Daffertshofer, "Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources," Human brain mapping, vol. 28, no. 11, pp. 1178-1193, 2007.
  30. Van Diessen et al., "Opportunities and methodological challenges in EEG and MEG resting state functional brain network research," Clinical Neurophysiology, vol. 126, no. 8, pp. 1468-1481, 2015.
  31. Heesen, "Adaptive step up tests for the false discovery rate (FDR) under independence and dependence," Universitäts-und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2014.
  32. Freyer, R. Becker, H. R. Dinse, and P. Ritter, "State-dependent perceptual learning," Journal of Neuroscience, vol. 33, no. 7, pp. 2900-2907, 2013.
  33. J. Hayashi and R. B. Ivry, "Duration selectivity in right parietal cortex reflects the subjective experience of time," Journal of Neuroscience, vol. 40, no. 40, pp. 7749-7758, 2020.
  34. M. Fontes et al., "Time estimation exposure modifies cognitive aspects and cortical activity of attention deficit hyperactivity disorder adults," International Journal of Neuroscience, vol. 130, no. 10, pp. 999-1014, 2020.
  35. Mioni, S. Grondin, L. Bardi, and F. Stablum, "Understanding time perception through non-invasive brain stimulation techniques: A review of studies," Behavioural brain research, vol. 377, p. 112232, 2020.
  36. H. Ghaderi, S. Moradkhani, A. Haghighatfard, F. Akrami, Z. Khayyer, and F. Balcı, "Time estimation and beta segregation: An EEG study and graph theoretical approach," PLoS One, vol. 13, no. 4, p. e0195380, 2018.
  37. Rivera-Tello, R. Romo-Vázquez, and J. Ramos-Loyo, "Correlation of EEG Brain Waves in a Time Perception Task," in Latin American Conference on Biomedical Engineering, 2019, pp. 79-84: Springer.
  38. Jazayeri and M. N. Shadlen, "A neural mechanism for sensing and reproducing a time interval," Current Biology, vol. 25, no. 20, pp. 2599-2609, 2015.