نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه بیوالکتریک، دانشکده‌ی مهندسی پزشکی، دانشگاه صنعتی امیرکبیر، تهران، ایران

2 دانشیار، گروه بیوالکتریک، دانشکده‌ی مهندسی پزشکی، دانشگاه صنعتی امیرکبیر، تهران، ایران

10.22041/ijbme.2022.548310.1751

چکیده

تصویربرداری زمان واقعی MRI با استفاده از اخذ شعاعی با نرخ نمونه­برداری پایین می­تواند برای ارزیابی­های دینامیک قلب به کار گرفته شود. چالش­ اساسی در این کار وجود آرتیفکت­های شدید در بخش پیرامونی تصویر در نرخ­های بالای کاهش نمونه­برداری است. در این پژوهش به منظور بهبود کیفیت بصری نواحی پیرامونی تصاویر، رویکرد جدیدی برای اخذ اطلاعات تصاویر متوالی، با ثبت داده روی یک مسیر شعاعی چرخش­یافته در فضای فرکانس مکانی ارائه شده است. بر این اساس با ترکیب اطلاعات اخذ شده‌ی فریم­های متوالی، امکان بازسازی تصاویر با رزولوشن مکانی بالا و پایین فراهم شده است. در رویکرد پیشنهادی، مشخصا به دلیل به کارگیری روش بازسازی تبدیل فوریه‌ی قطبی می­توان از تصاویر بازسازی شده با دو رزولوشن مختلف به منظور کاهش آرتیفکت­های بصری ناشی از نمونه­برداری پایین استفاده کرد. در این مقاله به طور خاص برای افزایش کارایی و دقت اندازه­گیری حرکت چرخش بطن چپ، از این روش پیشنهادی برای تصویربرداری زمان واقعی تشدید مغناطیسی نشان‌گذاری شعاعی استفاده شده است. بر اساس نتایج شبیه­سازی، معیار شباهت ساختاری تصاویر از 6/0 به 8/0 بهبود یافته است. هم­چنین در ثبت داده‌ی زمان واقعی با رزولوشن زمانی 46 میلی­ثانیه برای افراد سالم نیز نشان داده شده که در عین حال که رزولوشن زمانی اطلاعات چرخشی به خوبی حفظ شده­، تصاویر با کیفیت بصری مطلوبی نیز بازسازی شده است. 

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Improving the Visual Quality in Radially Acquired Real-Time MR Images

نویسندگان [English]

  • Elham Mohammadi 1
  • Abbas Nasiraei Moghaddam 2

1 Ph.D. Student, Bioelectric Department, Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran

2 Associate Professor, Bioelectric Department, Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran

چکیده [English]

Real-time MRI using highly undersampled radial acquisition can be used for dynamic assessments of the heart. The main challenges, however, are the presence of severe undersampling artifacts in the periphery of the images. In this study, to improve the visual quality of the final real-time images, a new method for the acquisition of successive frames based on a radial trajectory with the turned arrangement is presented. Accordingly, by combining the information obtained from successive frames, it is possible to reconstruct images with high and low spatial resolution. In the proposed method, specifically due to the use of the Polar Fourier Transform reconstruction method, reconstructed images with two different resolutions can be combined to reduce the visual effects of undersampling artifacts. In this paper, the proposed method has been used especially for the real-time radially tagged images to increase the efficiency and accuracy of measuring left ventricular rotation motion. According to the simulation results, the structural similarity measure is improved from 0.6 to 0.8. Real-time imaging with a time resolution of 46 ms of healthy individuals also shows that while the temporal resolution of the rotational information is well preserved, the visual quality of images is improved.

کلیدواژه‌ها [English]

  • Left Ventricle Rotation
  • Real-Time Imaging
  • Temporal Resolution
  • Radial Tagging
  • Radial Acquisition
  • Polar Fourier Transform
  1. Zhang Y, Li SY, Xie JJ, Wu Y. Twist/untwist parameters are promising evaluators of myocardial mechanic changes in heart failure patients with preserved ejection fraction. Clin Cardiol. 2020;43(6):587-593. doi:10.1002/clc.23353.
  2. Beladan CC, Călin A, Roşca M, Ginghină C, Popescu B a. Left ventricular twist dynamics: principles and applications. Heart. 2014;100(9):731-740. doi:10.1136/heartjnl-2012-302064.
  3. Buckberg G, Hoffman JIE, Nanda NC, Coghlan C, Saleh S, Athanasuleas C. Ventricular torsion and untwisting: Further insights into mechanics and timing interdependence: A viewpoint. Echocardiography. 2011;28(7):782-804. doi:10.1111/j.1540-8175.2011.01448.x.
  4. Nakatani S. Left Ventricular Rotation and Twist: Why Should We Learn? J Cardiovasc Ultrasound. 2011;19(1):1-6.
  5. Jeung MY, Germain P, Croisille P, Ghannudi S El, Roy C, Gangi A. Myocardial tagging with MR imaging: Overview of normal and pathologic findings. Radiographics. 2012;32(5):1381-1398. doi:10.1148/rg.325115098.
  6. Kaveh R, Moghaddam AN, Khan SN, Finn Paul J. Regional rotation of the left ventricle in healthy and cardiomyopathic subjects measured with radial myocardial tagging. J Cardiovasc Magn Reson. 2014;16(Suppl 1):P24. doi:10.1186/1532-429x-16-s1-p24.
  7. Rüssel IK, Götte MJW, Bronzwaer JG, Knaapen P, Paulus WJ, van Rossum AC. Left Ventricular Torsion. An Expanding Role in the Analysis of Myocardial Dysfunction. JACC Cardiovasc Imaging. 2009; 2(5): 648-655. doi:10.1016/j.jcmg.2009.03.001.
  8. Hong SJ, Shim CY, Kim D, et al. Dynamic change in left ventricular apical back rotation: A marker of diastolic suction with exercise. Eur Heart J Cardiovasc Imaging. 2018;19(1):12-19. doi: 10.1093/ehjci/jex241.
  9. Doucende G, Schuster I, Rupp T, et al. Kinetics of left ventricular strains and torsion during incremental exercise in healthy subjects: The key role of torsional mechanics for systolic-diastolic coupling. Circ Cardiovasc Imaging. 2010; 3(5): 586-594. doi:10.1161/CIRCIMAGING.110.943522
  10. Herzka DA, Derbyshire JA, Kellman P, McVeigh ER. Single heartbeat cardiac tagging for the evaluation of transient phenomena. Magn Reson Med. 2005; 54(6): 1455-1464. doi:10.1002/mrm.20719.
  11. Amzulescu MS, De Craene M, Langet H, et al. Myocardial strain imaging: Review of general principles, validation, and sources of discrepancies. Eur Heart J Cardiovasc Imaging. 2019;20(6):605-619. doi:10.1093/ehjci/jez041.
  12. Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP. Human heart: tagging with MR imaging--a method for noninvasive assessment of myocardial motion. Radiology. 1988 Oct; 169(1): 59-63.
  13. Cameli M, Mondillo S, Solari M, Righini FM, Andrei V, Contaldi C, De Marco E, Di Mauro M, Esposito R, Gallina S, Montisci R. Echocardiographic assessment of left ventricular systolic function: from ejection fraction to torsion. Heart failure reviews. 2016 Jan;21(1):77-94.
  14. Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP. Human heart: Tagging with MR imaging - A new method for noninvasive assessment of myocardial motion. Radiology. 1988; 169(1): 59-63. doi: 10.1148/radiology.169.1.3420283.
  15. Nasiraei-Moghaddam A, Paul Finn J. Tagging of cardiac magnetic resonance images in the polar coordinate system: Physical principles and practical implementation. Magn Reson Med. 2014;71(5):1750-1759. doi:10.1002/mrm.24839
  16. Mohammadi E, Nasiraei‐Moghaddam A, Uecker M. Real‐time radial tagging for quantification of left ventricular torsion. Magnetic Resonance in Medicine. 2022. doi:10.1002/mrm.29169 .
  17. Zhang S, Block KT, Frahm J. Magnetic resonance imaging in real time: Advances using radial FLASH. J Magn Reson Imaging. 2010;31(1):101-109. doi:10.1002/jmri.21987.
  18. Golshani S, Nasiraei-Moghaddam A. Efficient radial tagging CMR exam: A coherent k-space reading and image reconstruction approach. Magn Reson Med. 2017; 77(4): 1459-1472. doi:10.1002/mrm.26219.
  19. Arts T, Prinzen FW, Delhaas T, Milles JR, Rossi AC, Clarysse P. Mapping displacement and deformation of the heart with local sine-wave modeling. IEEE Trans Med Imaging. 2010;2 9(5): 1114-1123. doi:10.1109/TMI.2009.2037955.
  20. Nasiraei Moghaddam A, Rastegar F, Mohammadi E. SinMod method for quantification of LV rotational motion. In: In Proceedings of the 20th Annual Scientific Sessions of SCMR, Washington, DC, USA. ; 2017:222716.
  21. O’Sullivan JD. Fast Sinc Function Gridding Algorithm For Fourier Inversion In Computer Tomography. IEEE Trans Med Imaging. 1985;MI-4(4):200-207. doi:10.1109/tmi.1985.4307723.
  22. Wissmann L, Santelli C, Segars WP, Kozerke S. MRXCAT: Realistic numerical phantoms for cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2014;16(1). doi:10.1186/s12968-014-0063-3.
  23. Fessler JA, Sutton BP. Nonuniform fast Fourier transforms using min-max interpolation. IEEE Trans Signal Process. 2003;51(2):560-574. doi:10.1109/TSP.2002.807005.
  24. Huang F, Vijayakumar S, Li Y, Hertel S, Duensing GR. A software channel compression technique for faster reconstruction with many channels. Magn Reson Imaging. 2008; 26(1): 133-141. doi:10.1016/j.mri.2007.04.010.
  25. Young AA, Cowan BR. Evaluation of left ventricular torsion by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14(1). doi:10.1186/1532-429X-14-49.
  26. Lumens J, Delhaas T, Arts T, Cowan BR, Young AA. Impaired subendocardial contractile myofiber function in asymptomatic aged humans, as detected using MRI. Am J Physiol - Hear Circ Physiol. 2006;291(4). doi:10.1152/ajpheart.00074.2006.
  27. Lorenz CH, Walker ES, Morgan VL, Klein SS, Graham TP. Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. Journal of Cardiovascular Magnetic Resonance. 1999 Jan 1;1(1):7-21.
  28. Lorenz CH, Pastorek JS, Bundy JM. Delineation of normal human left ventricular twist throughout systole by tagged cine magnetic resonance imaging. J Cardiovasc Magn Reson. 2000;2(2):97-108. doi:10.3109/10976640009148678.
  29. Rüssel IK, Götte MJ, Kuijer JP, Marcus JT. Regional assessment of left ventricular torsion by CMR tagging. J Cardiovasc Magn Reson. 2008;10(1). doi:10.1186/1532-429X-10-26.
  30. Backhaus SJ, Lange T, George EF, et al. Exercise Stress Real-Time Cardiac Magnetic Resonance Imaging for Noninvasive Characterization of Heart Failure with Preserved Ejection Fraction: The HFpEF-Stress Trial. Circulation. 2021; 143(15): 1484-1498. doi:10.1161/CIRCULATIONAHA.120.051542.
  31. Moghaddam AN, Finn JP. Accelerated circumferential strain quantification of the left ventricle using CIRCOME: simulation and factor analysis. InMedical Imaging 2008: Physiology, Function, and Structure from Medical Images 2008 Mar 12 (Vol. 6916, pp. 32-39). SPIE.