بررسی ارتباطات مغزی مؤثر به روش تابع انتقال جهت‌دار برای ترکیب‌های مختلف توجه و هوشیاری بر‌اساس سیگنال EEG

نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی پزشکی، گروه بیوالکتریک، دانشکده مهندسی پزشکی، دانشگاه صنعتی امیرکبیر، تهران

2 استاد، گروه بیوالکتریک، دانشکده مهندسی پزشکی، دانشگاه صنعتی امیرکبیر، تهران

3 استادیار، گروه بیوالکتریک، دانشکده مهندسی پزشکی، دانشگاه صنعتی امیرکبیر، تهران

10.22041/ijbme.2017.60791.1203

چکیده

هدف این مقاله، بررسی ارتباطات مؤثر مغزی بر‌اساس روش تابع انتقال جهت­دار (DTF) است. این ارتباطات برای داده­های ثبت‌شده، از ترکیب حالت­های توجه و هوشیاری، که چهار دستة توجه-هوشیاری، توجه-عدم هوشیاری، عدم توجه-هوشیاری و عدم توجه-عدم هوشیاری را ایجاد کرده­اند، به‌دست آمدند. از روی ماتریس­های به‌دست­آمده برای هر دسته، شاخص­هایی مرسوم در حوزة DTF، معرفی و محاسبه شدند. سپس شاخص­های این چهار دسته، برای بررسی وجود اختلاف معنادار از نظر ارتباطات مؤثر، با یکدیگر مقایسه شدند. برای به‌دست آوردن روابط علّی خطی میان کانال‌ها به روش DTF، از مدل خود‌کاهشی چندمتغیره استفاده شد. برای بررسی دقیق­تر، سیگنال­ها به چهار باند فرکانسی پایه تقسیم شده و با آزمون اندازه­های تکراری دوطرفه، وجود اختلاف معنادار در دسته­ها و باندها بررسی شد. براساس نتایج، از 12 شاخص به‌‌دست‌آمده، دو شاخص  و  به تنهایی قادر به نمایش تمایز میان 5 حالت از 6 حالت ممکن از ترکیبات دوتایی دسته­ها هستند. تنها حالتی که هیچ کدام از شاخص­ها، تفاوت معناداری برای آن نشان ندادند، حالت عدم توجه-هوشیاری و عدم توجه-عدم هوشیاری بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Brain Effective Connectivity Investigation With Directed Transform Function Method for Different Combination of Attention and Consciousness Based on EEG Signals

نویسندگان [English]

  • Masoumeh Rahimi 1
  • Mohammad Hasan Moradi 2
  • Farnaz Ghassemi 3
1 Ms Student, Bioelectric Department, Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran
2 Professor, Bioelectric Department, Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran
3 Assistant Professor, Bioelectric Department, Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran
چکیده [English]

The aim of this paper is to study brain effective connectivity based on directed transform function (DTF) using granger causality method. This connectivity was calculated for recorded data in different states of attention and consciousness, forming four different classes: attention-consciousness, attention-unconsciousness, inattention-consciousness, and inattention-unconsciousness. Some common indices were extracted and calculated from the connectivity matrices. Indices of these four classes were compared to see whether there is a significant difference among them or not. The Multivariate Autoregressive (MVAR) model was used to obtain the linear causal relations between channels. Furthermore, signals were divided into four frequency bands for more accurate investigation, and the existence of significant difference was investigated with two-way repeated measures test. Results indicated that  and  among twelve indices could show a significant difference (p<0.05)  in five states out of six possible states. The only state that no feature was able to show a meaningful difference was inattention-consciousness, and inattention-unconsciousness.

کلیدواژه‌ها [English]

  • Effective Connectivity
  • Directed Transform Function
  • Feature Extraction
  • Repeated Measures test

[1]   ر. داودی، "تحلیل سیگنال‌های مغزی به منظور بررسی ارتباط میان توجه و هوشیاری"، پایان‌نامه کارشناسی ارشد، دانشکده مهندسی پزشکی، دانشگاه صنعتی امیرکبیر، 1390.

[2]   ف. قاسمی، "تحلیل پتانسیل‌های وابسته به رخداد مغزی با روش آنالیز مؤلفه‌های مستقل به منظور تعیین سطح توجه پایدار دیداری"، رساله دکتری مهندسی بیوالکتریک، دانشکده مهندسی پزشکی، دانشگاه صنعتی امیرکبیر، 1389.

[3]     M. Koivisto and A. Revonsuo, "Prechange event-related potentials predict change blindness in various attention conditions," Neuroreport, vol 16, no. 8, pp. 869-873, 2005.

[4]     M. Koivisto, P. Kainulainen, and A. Revonsuo, "The relationship between awareness and attention: evidence from ERP responses," Neuropsychologia, vol. 47, no. 13, pp. 2891-2899, 2009.

[5]     J. J. Van Boxtel, N. Tsuchiya, and C. Koch, "Consciousness and attention: on sufficiency and necessity," Frontiers in Psychology, vol. 1, p. 217, 2010.

[6]     O. Sporns, "Brain connectivity," Scholarpedia, vol. 2, p. 4695, 2007.

[7]     H. Shahabi and S. Moghimi, "Toward automatic detection ofbrain responses to emotional music through analysis of EEG effective connectivity," Computers in Human Behavior, vol. 58, pp. 231-239, 2016.

[8]     C. Sandhya, G. Srinidhi, R. Vaishali, M. Visali, and A. Kavitha, "Analysis of speech imagery using brain connectivity estimators," in Cognitive Informatics & Cognitive Computing (ICCI* CC), 2015 IEEE 14th International Conference on, 2015, pp. 352-359: IEEE.

[9]     A. A. Handojoseno et al., "Prediction of freezing of gait using analysis of brain effective connectivity," in Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE, 2014, pp. 4119-4122: IEEE.

[10] L. Shaw and A. Routray, "Efficacy of adaptive directed transfer function for neural connectivity estimationof EEG signal during meditation," in Signal Processing and Integrated Networks (SPIN), 2015 2nd International Conference on, 2015, pp. 198-202: IEEE.

[11] E. Gallego-Jutglà et al., "Diagnosis of Alzheimer's disease from EEG by means of synchrony measuresin optimized frequency bands," in Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, 2012, pp. 4266-4270: IEEE.

[12] Y. Nan, J. Wang, S. A. Xue, H. Sheng, Y. Jiao, and J. Wang, "Analysis of propagation ofmulti-channel EEG in the test of sustained attention," in Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, 2010, pp. 1666-1669: IEEE.

[13] R. Davoodi, M. Moradi, and A. Yoonessi, "Dissociation BetweenAttention and Consciousness During a Novel Task: An ERP Study," Neurophysiology, vol. 47, no. 2, pp. 144-154, 2015.

[14] E. R. Kandel, J. H. Schwartz, T. M. Jessell, S. A. Siegelbaum, and A. J. Hudspeth, Principles of neural science. McGraw-hill New York, 2000.

[15] S. J. Luck, "Event-Related Potentials," in APA Handbook of Research Methods in Psychology, 2012.

[16] A. Zeman, "Consciousness," Brain, vol. 124, pp. 1263-1289, 2001.

[17] R. Davoodi, M. H. Moradi, and A. Yoonessi, "Neural correlates of attention differ from consciousness during a novel psychophysical task," in Biomedical Engineering (ICBME), 2012 19th Iranian Conference of, 2012, pp. 339-343: IEEE.