تخمین زاویه گشتاور عضله میوکارد با استفاده از ردیابی تصاویر متوالی اکوکاردیوگرافی

نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری، فیزیک پزشکی، دانشکده علوم پزشکی، دانشگاه تربیت مدرس، تهران

2 استاد، فیزیک پزشکی، دانشکده علوم پزشکی، دانشگاه تربیت مدرس، تهران

3 پزشک، فوق متخصص قلب و عروق بیمارستان دی ، تهران

10.22041/ijbme.2017.52951.1166

چکیده

با توجه به حساسیت بازده عملکرد سیستولیک بطن چپ به زاویه‌ی چرخش قلب، در این مطالعه زاویه سه بعدی مسیر حرکت سه بعدی عضله میوکارد با استفاده همزمان از تصاویر دو بعدی از نمای محور کوتاه و نمای محور طولی دیواره بطن چپ برآورد شد. تصاویر متوالی اکوکاردیوگرافی دو بعدی با حداقل رزلوشن زمانی 14 میلی ثانیه از دو نمای محور کوتاه و طولی 19 مرد سالم ثبت و آنالیز شد. با استفاده از سیگنال الکتروکاردیوگرام هر فرد، تصاویر اکوکاردیوگرافی در دو نمای ثبت شده، همزمان شدند. حرکت دیواره سپتوم بین بطنی در سه سطح بیس، مید و اپکس توسط الگوریتم تطبیق بلوک با پردازش تصاویر متوالی اکوکاردیوگرافی در طول سه سیکل قلبی و از دو نمای ثبت شده برآورد شد. بستگی زوایای دوران برآورد شده از دو نمای محور طولی و محور کوتاه با زاویه‌ی سه بعدی مسیر حرکت در سطوح بیس، مید و اپکس بررسی گردید. زاویه مسیر حرکت سه بعدی قلب و زوایا‌ی دو بعدی دوران در دو نمای محور کوتاه و طولی دیواره سپتوم بین بطنی به ترتیب در سگمان بیس 01/3±33/16، 38/3±61/10 و 30/3±11/15 درجه، در سگمان مید 95/4±77/22، 96/2±78/7 و 66/2±72/16 درجه و در سگمان اپکس 81/5±60/14، 48/5±37/10 و 32/3±79/8 درجه برآورد شد. با توجه به حساسیت زاویه‌ی سه بعدی به تغییرات حرکت در هر سه بعد، این زاویه برای بررسی رفتار بیومکانیکی عضله میوکارد پیشنهاد می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of Myocardial Torsion Angle by Tracking Sequential Images of Echocardiography

نویسندگان [English]

  • Mosayeb Mobasheri 1
  • Manije Mokhtari Dizaji 2
  • Faride Roshanali 3
1 Medical Physics Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
2 Medical Physics Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
3 Department of Cardiology, Day General Hospital, Tehran, Iran
چکیده [English]

Heart torsion is one of  the biomechanical parameters that are sensitive to changes in both regional and global left ventricular (LV) function. In this study, angle of myocardium’s trajectory in three dimensions (Ф) was estimated by simultaneous use of two dimensional long apical and short axis views of LV septum sequential images. Then correlation of 3D angle and 2D rotation angle from long (χ) and short (θ)  axis views respectively was estimated and compared at three levels of base, mid and apex of interventricular septum wall. Sequential two dimensional echocardiography images of long and short axis views with minimum temporal resolution 14 ms of 19 healthy men was recorded and analyzed. Interventricular septum wall motion at three levels of base, mid and apex were estimated using sequential images processing of echocardiography in long and short axis views with block matching algorithm throughout three cardiac cycles. Then correlation of 2D angle of rotation from long (χ) and short (θ) axis views was analyzed with three dimentional angular of myocardium’s trajectory (Ф) at three levels of base, mid and apex of interventricular septum wall. Ф, θ and χ angles at base level 16.33±3.01, 10.61±3.38 and 15.11±3.30 degrees, mid level 22.77±4.95, 7.78±2.96 and 16.72±2.66 degrees and apex level of interventricular septum wall 14.60±5.81, 10.37±5.48 and 8.79±3.32 degrees were extracted respectively. Regard to sensitivity of 3D angle to variation of motion in each of three dimensions, it is suggested for examination of biomechanical behavior myocardium in different pathologic conditions.

کلیدواژه‌ها [English]

  • 3D angle
  • myocardium
  • Block matching algorithm

[1] H. Geyer, G. Caracciolo, H. Abe, S. Wilansky, S. Carerj, F. Gentile,  H.J. Nesser, B. Khandheria, J. Narula, P.P. Sengupta. Assessment of myocardial mechanics using speckle tracking echocardiography: Fundamentals and clinical applications. J Am Soc Echocardiogr Vol. 23, No. 4, pp. 351-369, 2010.

[2] L.A. Taber, M. Yang, W.W. Podszus. Mechanics of ventricular torsion. J Biomech Vol. 29, No. 1, pp. 745-752, 1996.

 [3] P.P. Sengupta, V.K. Krishnamoorthy, J. Korinek, J. Narula, M.A. Vannan, S.J. Lester, J.A. Tajik, J.B. Seward, B.K. Khandheria, M. Belohlavek. Left ventricular form and function revisited: applied translational science to cardiovascular ultrasound imaging. J Am Soc Echocardiogr Vol. 20, No. 2, pp. 539-551, 2010.

 [4] F. Torrent-Guasp, M. Ballester, G.D. Buckberg, F. Carreras, A. Flotats, I. Carrio, A. Ferreira, L.E. Samuels, J. Narula. Spatial orientation of the ventricular muscle band: Physiologic contribution and surgical implications. J Thorac Cardiovasc Surg Vol. 122, No. 2, pp. 392-389, 2001.

[5] S. Nakatani. Left ventricular rotation and twist: why should we learn? J Cardiovasc Ultrasound Vol. 19, No. 2, pp. 1-6, 2011.

 [6] G.D. Buckberg. Basic science review: The helix and the heart. J Thorac Cardiovasc Surg Vol. 124, No. 1, pp. 863-883, 2002.

[7] P.P. Sengupta, A.J. Tajik, K. Chandrasekaran, B.K. Khandheria. Twist mechanics of the left ventricle: Principles and application. J Am Coll Cardiol Imag Vol. 1, No. 2, pp. 366-376, 2008.

 [8] B.T. Esch, D.E.R. Warburton. Left ventricular torsion and recoil: implications for exercise performance and cardiovascular disease. J Appl Physiol Vol. 106, No. 1, pp. 362-369, 2009.

[9] D.E. Hansen, G.T. Daughters, E.L. Alderman, E.B. Stinson, J.C. Baldwin, D.C. Miller. Effect of acute human cardiac allograft rejection on left ventricular systolic torsion and diastolic recoil measured by intramyocardial markers. Circulation Vol. 76, No. 3, pp. 998-1008, 1987.

[10]         M.B. Buchalter, J.L. Weiss, W.J. Rogers, E.A. Zerhouni, M.L. Weisfeldt, R. Beyar, E.P. Shapiro. Noninvasive quantification of left ventricular rotational deformation in normal humans using magnetic resonance imaging myocardial tagging. Circulation Vol. 81, No. 1, pp. 1236-1244, 1990.

[11] U. Gustafsson, P. Lindqvist, S. Morner, A. Waldenstrom. Assessment of regional rotation patterns improves the understanding of the systolic and diastolic left ventricular function: an echocardiographic speckle-tracking study in healthy individuals. Eur J Echocardiogr Vol. 10, No. 1, pp. 56-61, 2009.

[12] I. Rüssel, M.J.W. Götte, J.P.A. Kuijer, J.T. Marcus. Regional assessment of left ventricular torsion by CMR tagging. J Cardiovasc Magn Reson Vol. 1, No. 1, pp. 10-26, 2008.

[13] J. Garot J, O. Pascal, B. Diebold, G. Derumeaux, B.L. Gerber, J.L. Dubis-Rande, J.A.C. Lima. Alterations of systolic left ventricular twist after acute myocardial infarction. Am J Physiol Heart Circ Physiol Vol. 282, No. 1, pp.  357-362, 2002.

 [14]T. Helle-Valle, E.W. Remme, E. Lyseggen, E. Pettersen, T. Vartdal, A. Opdahl, H.J. Smith, N.F. Osman, H. Ihlen, T. Edvardsen, O.A. Smiseth. Clinical assessment of left ventricular rotation and strain: A novel approach for quantification of function in infarcted myocardium and its border zones. Am J Physiol Heart Circ Physiol Vol. 297, No. 2, pp. H257-H267, 2009.

 [15] Y. Notomi, P. Lysyansky, R.M. Setser, T. Shiota, Z.B. Popovic, M. G. Martin-Miklovic, J. A. Weaver, S.J. Oryszak, N.L. Greenberg, R.D. White, J.D. Thomas. Measurement of ventricular Torsion by two-dimensional ultrasound speckle tracking imaging. J Am Coll Cardiol Vol. 45, No. 4, pp. 2034-2041, 2005.

[16]         Z. Arab-Baferania, M. Mokhtari-Dizaji, F. Roshanalib. Extraction of left-ventricular torsion angle from the long-axis view by block-matching algorithm: Comparison with the short-axis view. Ultrasonics Vol. 53, No. 2, pp. 552-560, 2013.

[17]         K. Anderson, P.W. Wilson, P.M. Odell, W.B. Kannel. An updated coronary risk profile. statement for health professionals. Cir J  Vol. 83, No. 2, pp. 356-362, 1991.

 [18] M.D. Cerqueira, N.J. Weissman, V. Dilsizian, A.K. Jacobs, S. Kaul, W.K. Laskey, D.J. Pennell, J.A. Rumberger, T. Ryan, M.S. Verani. American Heart Association Writing Group on Myocardial Segmentation and Registration for CardiacImaging. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Int J Cardiovasc Imag Vol. 18, No. 2, pp. 539-542, 2002.

 [19] D. Boukerroui, J.A. Noble, M. Brady. Velocity estimation in ultrasound images: A block matching approach. Inf Proc Med Imag Vol. 18, No. 2, pp. 586-598, 2003.

[20]         E.J. Chen, W.K. Jenkins, W.D. O'Brien. The impact of various imaging parameters on ultrasonic displacement and velocity estimates. IEEE Trans Ultrason Ferroelectr Freq Control Vol. 41, No. 4, pp. 293- 301, 1994.

[21]         R.S. Chadwick. Mechanics of the left ventricle. Biophys J Vol. 39, No. 4, pp. 279-288, 1982.

 [22] T. Arts, P.C. Veenstra, R.S.  Reneman. Epicardial deformation and left ventricular wall mechanics during ejection in the dog. Am J Physiol Vol. 243, No. 5, pp. H379-H390, 1982.

[23]         J.M. Guccione, S.M. Moonly, P. Moustakidis, K.D. Costa, M.J. Moulton, M.B. Ratcliffe, M.K. Pasque. Mechanism underlying mechanical dysfunction in the border zone of left ventricular aneurysm: A finite element model study. Ann Thorac Surg Vol. 7, No. 1, pp. 654-662, 2001a.

[24] J.M. Guccione, S.M. Moonly, A.W. Wallace, M.B. Ratcliffe. Residual stress produced by ventricular volume reduction surgery has little effect on ventricular function and mechanics: A finite element model study.  J Thorac Cardiovasc Surg Vol. 122, No. 2, pp. 592–599, 2001b.

[25] Z.H. Sun, Y.P. Liu, D.J. Zhou, Y. Qi. Use of coronary CT angiography in the diagnosis of patients with suspected coronary artery disease: Findings and clinical indications. J Geriatr Cardiol Vol. 9, No. 1, pp. 115–122, 2012.

[26] R.W. Biederman, V.L. Sorrell, N.C. Nanda, S. Voros, A.C. Thakur. Transesophageal echocardiographic assessment of coronary stenosis: A decade of experience. Echocardiography Vol. 18, No. 1, pp. 49-57, 2001.

  [27] J. Lumens, T. Delhaas, T. ArtsT, B.R. Cowan, A.A. Young. Impaired subendocardial contractile myofiber function in asymptomatic aged humans, as detected using MRI. Am J Physiol Heart Circ Physiol Vol. 291, No. 1, pp. H1573-H1579, 2006.

[28] T. Arts, R.S. Reneman. Dynamics of left ventricular wall and mitral valve mechanics: A model study. J Biomech Vol. 22, No. 2, pp. 261-271, 1989.

[29] A.A. Young. Ventricular torsion: An aid to ejection? JACC Cardiovasc Imag Vol. 5, No. 3, pp. 282-284, 2012.

[30] F. Yeung, S.F. Levinson, D. Fu, K.J. Parker. Feature-adaptive motion tracking of ultrasound image sequences using a deformable mesh. IEEE Trans Med Imag Vol. 17, No. 4, pp. 945-956, 1998.

[31] J.A. Urbano Moral, J.A. Arias Godinez, M.S. Maron, R. Malik, J.E. Eagan, A.R. Patel, N.G. Pandian. Left ventricular twist mechanics in hypertrophic cardiomyopathy assessed by three-dimensional speckle tracking echocardiography. Am J Cardiol Vol. 108, No. 1, pp. 1788-1795,  2011.