نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 فارغ التحصیل کارشناسی ارشد مهندسی مخابرات، دانشکده مهندسی برق، دانشگاه یزد، یزد

2 دانشیار، دانشکده مهندسی برق، دانشگاه یزد، یزد

3 استادیار، دانشکده مهندسی، دانشگاه پیام نور، اصفهان

10.22041/ijbme.2017.45141.1135

چکیده

هدف این مقاله، ارزیابی روش ترکیبی آنالیز همبستگی کانونی- فیلتر تطبیقی حداقل مربعات بازگشتی (CCA-RLS) در حذف آرتیفکت چشمی (EOG) از سیگنال مغزی (EEG) و مقایسة آن با روش‏های آنالیز مؤلفه‏های مستقل (ICA)، آنالیز همبستگی کانونی(CCA)، فیلتر تطبیقی حداقل مربعات بازگشتی (RLS) و روش ترکیبی ICA-RLS است. برای این منظور، بعد از تجزیة سیگنال نویزی توسط CCA، مؤلفة شامل آرتیفکت EOG با محاسبة مقدار کرتوزیس شناسایی شده و با استفاده از فیلتر RLS، فیلتر شد؛ سپس با ترکیب مؤلفه‏ها، سیگنال حذف نویز­شده بازسازی شد. برای مقایسة کمّی روش‏ها از دو معیار ارزیابی میانگین مجذور مربعات خطا (MSE) و نسبت سیگنال به نویز (SNR) برای داده­های شبیه‏سازی شده استفاده­شده است. متوسط مقادیر MSE وSNR برای 5 نفر در 4 کانال مختلف محاسبه شد. داده­های استفاده­شده از مجموعه داده­های مسابقات BCI2008 انتخاب شدند. با توجه به نتایج به‏دست آمده، روش ترکیبی پیشنهادی CCA-RLS ، عملکرد بهتری نسبت به سایر روش‏های استفاده­شده در این مقاله دارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

A New Hybrid Method for EOG Artifact Rejection from EEG Signal Using CCA and RLS

نویسندگان [English]

  • Maryam Tavakoli Najafabadi 1
  • Vahid Abootalebi 2
  • Farzaneh Shayegh 3

1 MSC graduated, Electrical Engineering Department, Yazd University, Yazd, Iran

2 Associate Professor, Electrical Engineering Department, Yazd University, Yazd, Iran

3 Assistant Professor, Engineering Department, Payamnoor University, Esfahan, Iran

چکیده [English]

The purpose of this article is to evaluate the efficiency of Canonical Correlation Analysis- Recursive Least Square (CCA-RLS)hybridmethod in ElectroOcluGram (EOG) artifact removal from ElectroEncephaloGram (EEG) signal and compare it with Independent Component Analysis (ICA), Canonical Correlation Analysis (CCA), Recursive Least Square (RLS)methods and ICA-RLS hybrid method. After decomposition of the noisy signal by CCA, the noisy components aredetected based ontheir kurtosis, and are filtered by RLS. As the result,the enhanced signal is reconstructed by mixing the original noise-free components and filtered components. In order to compare the methods quantitatively, two evaluation criteria, namely Mean Square Error (MSE) and Signal to Noise Ratio (SNR) are used.The MSE and SNR average values were calculated for five subject in four different channels. EEG data are taken from BCI2008. According to the results,the combination of CCA-RLS method has better performance compareto the other methods used in this paper.
 

کلیدواژه‌ها [English]

  • EOG artifact
  • CCA-RLS method
  • RLS filter
  • EEG signal

[1]     E. Nidermeyer, F.L. Silva, “Historical Aspects,” in Electroencephalography: Basic Principles, 5th ed. Philadelphia, 2012, pp17-85.

[2]     م. شاه بختی،«کاهش اثر آرتیفکت‏های پلک‏زدن در سیگنال‏های EEG"مجله مهندسی پزشکی،شماره 136، صفحه 43-41، 1385.

[3]     S. Puthusserypady, T. Ratnarajah, “Robust Adaptive Techniques for Minimization of EOG Artifacts from EEG Signals,” ELSEVIER Transaction on Signal Processing, vol. 86, pp. 2351-2363, 2006.

[4] H. Shahabi, S. Moghimi, H. Zamani-Jafarian, “EEG Eye Blink Artifact Removal by EOG Modeling and Kalman Filter,” IEEE Transaction on BioMedical Engineering and Informatics, pp. 496-500, 2012.

[5] F.C.Gratton, M.J.Coles, E. Donchin, “A New Method for Offline Removal of Ocular Artifact,” ELSEVIERTransaction on Electroencephalography and Clinical Neurophisiology, Vol. 55, pp. 468-484, 1983.

[6]   J. C.Woesternburg, M.N.Verbuten, J.N.Slangen, “the Removal of the Eye-Movement Artifact from the EEG by Regression Analysis in the Frequency Domain,” ELSEVIER Transaction on Biological Phisiology, Vol. 16, pp. 127-147, 1983.

[7] W. Du, H.M. Leong, A.S. Gevins, “Ocular Artifact Minimization by Adaptive Filtering,” Proc. IEEE Conf. on in Statistical Signal and Array Processing, pp. 433-436, 1994.

[8] W. Qi, “EOG Artifacts Removal in EEG Measurments for Affective interaction with Brain Computer interface,” Proc. IEEE Conf. on Intelligent Information Hiding and Multimedia Signal Processing, pp. 471-475, 2012.

[9] S. Makeig, A.J. Bell, T.P. Jung. T.J. Sejnowski, “Independent Component Analysis of Electroencephalographic data,” In Advances in Neural Information Processing systems,Vol. 8, pp. 145-151, 1996.

[10]J.N. Knight, “Signal Fraction Analysis and Artifact Removal in EEG,” thesis for Degree of Master of science,Colorado State University, Fall 2003.

[11]   ف. قاسمی، م. مرادی، م. تهرانی دوست، و. ابوطالبی،"نقاط قوت و ضعف استفاده از ترکیب آنالیز مؤلفه‏های مستقل و تبدیل ویولت به منظور حذف خودکار آرتیفکت چشمی از سیگنال الکتروانسفالوگرام"کنفرانس ملی سالانه انجمن کامپیوتر ایران،1387.

[12]   ف. شایق، ع. عرفانیان، "حذف بر خط آرتیفکت پلک‏زدن از سیگنال‏های مغزی در سیستم‏های ارتباطی مغز با کامپیوتر با استفاده از تحلیل وفقی مؤلفه‏های مستقل"مجله مهندسی برق و کامپیوتر ایران، شماره 3، صفحه 210-199، 1388.

[13] B. Yang, L. He, “Removal of Ocular Artifacts from EEG signals using ICA-RLS in BCI,” IEEE Transaction on Electronics, Computer and Aplications, Vol. 25, pp. 544-547, 2014.

[14] Site of BCI Competition 2008 – Graz Dataset IIa, Available:http://bci/competition_IIa.

[15] P. He, E.G. Wilson, C. Russell, “Removal of Ocular Artifacts from Electro Encephalogram by Adaptive Filtering,” Proc. Int. Conf. on Medical and Biological Engineering and Computing, Vol. 42, pp. 407-412, 2004.

 [16] C. Teng, Y. Zhang, G. Wang, “The Removal of EMG Artifact from EEG Signals by the MultivariativeEmprical Mode Decomposition,” Proc. Int. Conf. on Communications and Computing, Vol. 13, pp. 873-876, 2014.

[17] L. Ferdouse, N. Akhtar, T.H. Nipa, F.T. Jaigirdar, “Simulation and Performance Analysis of Adaptive Filtering Algorithms in Noise Cancellation,” International Journal of Computer Science, Vol. 8, pp. 185-192, 2011.

[18] V. Krishnaveni, S. Jayaraman, P.M. Kumar, K. Shivakumar, K. Ramadoss, “Comparision of Independent Component Analysis Algorithms for Removal of Ocular Artifacts from Electroencephalogram,” International Journal of Measurement Science Riview, Vol. 5, pp. 67-79, 2005.

[19] S. Makeig, A.J. Bell, T.P. Jung. T.J. Sejnowski, “Independent Component Analysis of Electroencephalographic data,” In Advances in Neural Information Processing systems, Vol. 8, pp. 145-151, 1996.

[20] T.P. Jung, C. Humphries, T.W. Lee. S. Makeig, M.J. Sejnowski,“Removing  Electroencephalographic Artifacts: Comparison between ICA and PCA,” IEEE Transaction on Signal Processing, Vol. 8, pp. 63-72, 1998.

[21] A. Hyvarinen, E. Oja, “Independent Component Analysis: Algorithms and Applications,” ELSEVIER Transaction on Neural Network, Vol. 13, pp. 411-430, 2000.

[22] L. Shoker, S. Anaei, J. Chambers, “Artifact Removal from Electroencephalograms using a Hybrid BSS-SVM Algorithm,” IEEE Transaction on Signal Processing Letters, Vol. 12, pp. 721-726, 2005.

[23] M.H. Soomro, N. Badruddin, M. Z Yusoff, M.A Jatoi, “Automatic Eye-Blink Artifact Removal Method Based on EMD-CCA,” IEEE Conf. on Complex Medical Engineering, pp. 186-190, 2013.