نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، مهندسی مکانیک، دانشگاه صنعتی شاهرود، شاهرود

2 دانشیار، مهندسی مکانیک، دانشگاه صنعتی شاهرود، شاهرود

10.22041/ijbme.2017.70232.1249

چکیده

افزایش بیماری‌های قلبی-عروقی سبب شده است که محققان، بیشتر از پیش به بررسی جریان در عروق خونی بپردازند. در این مقاله، اثر الاستیسیتة دیوارة شریان بر پارامترهای همودینامیکی با در‌نظر گرفتن تعامل خون و دیوارة رگ بررسی شد. تنش برشی روی دیواره در زمان‌های متفاوت، تغییر می‌کند و به تنهایی قادر به بیان گرفتگی عروق نمی‌باشد؛ از این‌رو شاخص برش نوسانی، تنش برشی را بدون در‌نظر گرفتن میانگین زمانی بردار تنش برشی بیان می‌کند. در این مطالعه، یک مدل سه‌بعدی از دوشاخه شدن کرونر چپ همراه با چهار مدل دیواره، در‌نظر‌گرفته شد. نتایج در یک جریان ضربانی از سیال غیرنیوتنی به روش کوپلینگ دو‌طرفه و با استفاده از روش اویلر-لاگرانژی اختیاری محاسبه شد. مشاهدات حاکی از کاهش 13 درصدی پروفیل‌های سرعت در محل دو‌شاخه شدن است، که در مدل‌ هایپرالاستیک به بیشترین میزان اختلاف می‌رسد. همچنین با افزایش سفتی در دیواره، پروفیل‌های سرعت و نوسانات تنش برشی روی دیواره افزایش یافت. تنش برشی متوسط در مدل صلب، اختلاف 28 درصدی را در مقایسه با مدل‌ هایپرالاستیک نشان داد. مقایسة این نتایج با اطلاعات بالینی نشان داد که مناطقی با تنش برشی متوسط 1.10 Pa و کمتر از آن، در حضور شاخص برش نوسانی بیشتر از 0.3، می‌تواند از مناطق پر‌خطر در تشکیل پلاک‌های آترواسکلروز، به‌ویژه در ناحیة خلفی بعد از انشعاب، باشد؛ در حالی‌که در مدل هایپرالاستیک نسبت به دیگر مدل‌ها، نتایج بهتری مشاهده شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Numerical Investigation of the Effects of Artery Elasticity on Wall Shear Stress and Oscillatory Shear Index in the Left Coronary Bifurcation

نویسندگان [English]

  • Saeed Bahrami 1
  • Mahmood Norouzi 2

1 M.Sc Student, Mechanical Engineering Department, Shahrood University of Technology, Shahrood Iran

2 Associate Professor, Mechanical Engineering Department, Shahrood University of Technology, Shahrood Iran

چکیده [English]

Increasing the cardiovascular disease had led to the researchers to investigate the blood flow more than before. In this article the effects of artery elasticity on hemodynamic parameters with concerning the interaction between blood and the vessel’s wall had been investigated. The wall shear stress had changed with different times and cannot send the congestion of the vessels. From this point the oscillatory shear index had been said the shear stress without the time average. In this study a 3D model from the left coronary bifurcation with 4 models of wall had been investigated. The result from a pulsatile flow from a non-newtonian flow with the method of two ways coupling by using the method of arbitrary Lagrangian–Eulerian had been calculated. The observation had showed a 13 percent decreasing in the profile of velocities at the bifurcation place in that in the hyperelastic model had the highest subtraction. Also by increasing the toughness of the wall the velocity profile and oscillator shear stress were increased. The average shear stress in the model of rigid had showed the 28 percent difference in comparison with the hyperelastic model. By comparing the results with clinical data showed that, the places with average shear stress 1.10 pa and less than that with presenting the oscillatory shear index is more than 0.3 that can be a potential dangerous places in forming atherosclerosis oscillatory shear index plaque especially in the posterior after the bifurcation. Meanwhile in the hyperelastic model the results are more precise than the other models.

کلیدواژه‌ها [English]

  • Fluid Structure Interaction
  • Hemodynamic Parameters
  • Non-Newtonian
  • Left Coronary

[1]   M. Malvè, A. Gharib, S. Yazdani, G. Finet, M. Martínez, R. Pettigrew, J. Ohayon, Tortuosity of coronary bifurcation as a potential local risk factor for atherosclerosis: CFD steady state study based on in vivo dynamic CT measurements, Annals of biomedical engineering, Vol. 43, No. 1, pp. 82-93, 2015.

[2]   A. M. Malek, S. L. Alper, S. Izumo, Hemodynamic shear stress and its role in atherosclerosis, Jama, Vol. 282, No. 21, pp. 2035-2042, 1999.

[3]   H. A. Himburg, D. M. Grzybowski, A. L. Hazel, J. A. LaMack, X.-M. Li, M. H. Friedman, Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability, American Journal of Physiology-Heart and Circulatory Physiology, Vol. 286, No. 5, pp. H1916-H1922, 2004.

[4]   W. Yin, S. K. Shanmugavelayudam, D. A. Rubenstein, The effect of physiologically relevant dynamic shear stress on platelet and endothelial cell activation, Thrombosis research, Vol. 127, No. 3, pp. 235-241, 2011.

[5]   J. E. Moore, E. Bürki, A. Suciu, S. Zhao, M. Burnier, H. R. Brunner, J.-J. Meister, A device for subjecting vascular endothelial cells to both fluid shear stress and circumferential cyclic stretch, Annals of biomedical engineering, Vol. 22, No. 4, pp. 416-422, 1994.

[6]   M. Klanchar, J. M. Tarbell, D.-M. Wang, In vitro study of the influence of radial wall motion on wall shear stress in an elastic tube model of the aorta, Circulation research, Vol. 66, No. 6, pp. 1624-1635, 1990.

[7]   W. Nichols, M. O'Rourke, C. Vlachopoulos, McDonald's blood flow in arteries: theoretical, experimental and clinical principles: CRC press, 2011.

[8]   J. R. Cebral, P. J. Yim, R. Löhner, O. Soto, P. L. Choyke, Blood flow modeling in carotid arteries with computational fluid dynamics and MR imaging, Academic radiology, Vol. 9, No. 11, pp. 1286-1299, 2002.

[9]   J. Penrose, D. Hose, C. Staples, I. Hamill, I. Jones, D. Sweeney, Fluid structure interactions: coupling of CFD and FE, in Proceeding of.

[10] K. Lee, X. Xu, Modelling of flow and wall behaviour in a mildly stenosed tube, Medical engineering & physics, Vol. 24, No. 9, pp. 575-586, 2002.

[11] E. Jarvinen, M. Lyly, J. Ruokolainen, P. Raback, Three-dimensional fluid-structure interaction modeling of blood flow in elastic arteries, ECCOMAS Comp Fluid Dynamics Conference, Swansea, pp.1-13, 2001.

[12] A. Santamarina, E. Weydahl, J. M. Siegel, J. E. Moore, Computational analysis of flow in a curved tube model of the coronary arteries: effects of time-varying curvature, Annals of biomedical engineering, Vol. 26, No. 6, pp. 944-954, 1998.

[13] J. T. Dodge, B. G. Brown, E. L. Bolson, H. T. Dodge, Intrathoracic spatial location of specified coronary segments on the normal human heart. Applications in quantitative arteriography, assessment of regional risk and contraction, and anatomic display, Circulation, Vol. 78, No. 5, pp. 1167-1180, 1988.

[14] J. T. Dodge, B. G. Brown, E. L. Bolson, H. T. Dodge, Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation, Circulation, Vol. 86, No. 1, pp. 232-246, 1992.

[15] F. Kabinejadian, D. N. Ghista, Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution, Medical Engineering & Physics, Vol. 34, No. 7, pp. 860-872, 2012.

[16] B. Nuntadilok, J. Poulter, P. Boonkrong, B. Wiwatanapataphee, Numerical Study of Pulsatile Blood Flow in the Coronary System with the RCA Bypass Graft, Journal of Pure and Applied Mathematics: Advances and Applications, Vol. 9, No. 2, pp. 81-106, 2013.

[17] T. Chaichana, Z. Sun, J. Jewkes, Computation of hemodynamics in the left coronary artery with variable angulations, Journal of biomechanics, Vol. 44, No. 10, pp. 1869-1878, 2011.

[18] R. Torii, M. Oshima, T. Kobayashi, K. Takagi, T. E. Tezduyar, Influence of wall elasticity in patient-specific hemodynamic simulations, Computers & Fluids, Vol. 36, No. 1, pp. 160-168, 2007.

[19] B. Wiwatanapataphee, Y. H. Wu, T. Siriapisith, B. Nuntadilok, Effect of branchings on blood flow in the system of human coronary arteries, Math Biosci Eng, Vol. 1, No. 9, pp. 1, 2012.

[20] C. D. Murray, The physiological principle of minimum work I. The vascular system and the cost of blood volume, Proceedings of the National Academy of Sciences, Vol. 12, No. 3, pp. 207-214, 1926.

[21] Y. Murasato, Y. Hikichi, S. Nakamura, F. Kajiya, K. Iwasaki, Y. Kinoshita, M. Yamawaki, T. Shinke, S. Yamada, T. Yamashita, Recent perspective on coronary bifurcation intervention: statement of the “Bifurcation Club in KOKURA”, Journal of interventional cardiology, Vol. 23, No. 4, pp. 295-304, 2010.

[22] B. M. Johnston, P. R. Johnston, S. Corney, D. Kilpatrick, Non-Newtonian blood flow in human right coronary arteries: steady state simulations, Journal of biomechanics, Vol. 37, No. 5, pp. 709-720, 2004.

[23] M. Xavier, e. al, An adapted optical flow algorithm for robust quantification of cardiac wall motion from standard cine-mr examinations, IEEE Transactions on Information Technology in Biomedicine, Vol. 16, No. 5, pp. 859-868, 2012.

[24] B. Buriev, T. Kim, T. Seo, Fluid-structure interactions of physiological flow in stenosed artery, Korea-Australia Rheology Journal, Vol. 21, No. 1, pp. 39-46, 2009.

[25] A. Karimi, M. Navidbakhsh, A. Shojaei, K. Hassani, S. Faghihi, Study of plaque vulnerability in coronary artery using Mooney–Rivlin model: a combination of finite element and experimental method, Biomedical Engineering: Applications, Basis and Communications, Vol. 26, No. 01, pp. 1450013, 2014.

[26] C. Chiastra, W. Wu, B. Dickerhoff, A. Aleiou, G. Dubini, H. Otake, F. Migliavacca, J. F. LaDisa, Computational replication of the patient-specific stenting procedure for coronary artery bifurcations: From OCT and CT imaging to structural and hemodynamics analyses, Journal of biomechanics, Vol. 49, No. 11, pp. 2102-2111, 2016.

[27] D. N. Ku, D. P. Giddens, C. K. Zarins, S. Glagov, Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress, Arteriosclerosis, thrombosis, and vascular biology, Vol. 5, No. 3, pp. 293-302, 1985.

[28] X. He, D. N. Ku, Pulsatile flow in the human left coronary artery bifurcation: average conditions, Journal of Biomechanical Engineering, Vol. 118, pp. 74-82, 1996.

[29] F. Kabinejadian, L. P. Chua, D. N. Ghista, M. Sankaranarayanan, Y. S. Tan, A novel coronary artery bypass graft design of sequential anastomoses, Annals of biomedical engineering, Vol. 38, No. 10, pp. 3135-3150, 2010.

[30] C. Chiastra, S. Morlacchi, D. Gallo, U. Morbiducci, R. Cárdenes, I. Larrabide, F. Migliavacca, Computational fluid dynamic simulations of image-based stented coronary bifurcation models, Journal of The Royal Society Interface, Vol. 10, No. 84, pp. 20130193, 2013.

[31] S. Bahrami, F. Firouzi, The effect of wall shear stress and oscillatory shear index on probability of atherosclerosis plaque formation in normal left coronary artery tree, Iranian Journal of Biomedical Engineering, Vol. 9, No. 3, pp. 303-293, 2015.)in Persian (فارسی)

[32] H. Nordgaard, A. Swillens, D. Nordhaug, I. Kirkeby-Garstad, D. Van Loo, N. Vitale, P. Segers, R. Haaverstad, L. Løvstakken, Impact of competitive flow on wall shear stress in coronary surgery: computational fluid dynamics of a LIMA-LAD model, Cardiovascular research, pp. cvq210, 2010.

 [33]        J. V. Soulis, T. M. Farmakis, G. D. Giannoglou, G. E. Louridas, Wall shear stress in normal left coronary artery tree, Journal of biomechanics, Vol. 39, No. 4, pp. 742-749, 2006.

[34] M. I. Papafaklis, K. C. Koskinas, Y. S. Chatzizisis, P. H. Stone, C. L. Feldman, In-vivo assessment of the natural history of coronary atherosclerosis: vascular remodeling and endothelial shear stress determine the complexity of atherosclerotic disease progression, Current opinion in cardiology, Vol. 25, No. 6, pp. 627-638, 2010.