شبیه‌سازی عددی تأثیر بیفسفنات‌ها بر بازسازی استخوان اطراف ایمپلنت‌های دندانی

نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی پزشکی، دانشکده مهندسی مکانیک، دانشگاه صنعتی سهند، تبریز

2 استاد، گروه بیومکانیک، دانشکده مهندسی مکانیک، دانشگاه صنعتی سهند، تبریز

3 دانشیار، دانشکده دندانپزشکی، دانشگاه علوم‌پزشکی تبریز، تبریز

10.22041/ijbme.2017.53545.1169

چکیده

امروزه، استفاده از ایمپلنت‌های دندانی در افراد مبتلا به پوکی استخوان در حال افزایش است. پوکی استخوان می‌تواند تأثیر مهمی در عدم موفقیت وسایل استئوسنتز، پروتزها و ایمپلنت‌های دندانی داشته باشد. استفاده از بیفسفنات‌ها، با کاهش سوخت‌وساز استخوان بر بازسازی استخوان تأثیر می‌گذارد. این اثر می‌تواند به افزایش استخوان‌سازی منجر شود. استفاده از این ماده می‌تواند راه‌کاری برای افزایش چگالی استخوان در بیماران مبتلا به پوکی استخوان باشد. در این مطالعه، اثر غلظت‌های مختلف دارورسانی بیفسفنات‌ها بر بازسازی استخوان بررسی می‌شود. با توسعة مدل بازسازی استخوان و در‌نظر گرفتن تأثیر غلظت دارو در جذب استخوان، می‌توان آن را برای بررسی تأثیر دارورسانی بکار برد. برای این منظور، از 5، 10 و 20 میلی‌گرم آلندرونات برای هر ایمپلنت و نمونه کنترل بدون دارو و برای مدت 360 روز شبیه‌سازی انجام شد. با مقایسة نتایج به‌دست آمده با نمونه کنترل، کاهش تنش و افزایش چگالی و در‌نتیجه افزایش مدول الاستیسیتة استخوان با بالا رفتن مقدار دوز دارو مشاهده شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Simulation of Bisphosphonates Effect on Bone Remodeling Around Dental Implants

نویسندگان [English]

  • Mehran Ashrafi 1
  • Farzan Ghalichi 2
  • Behnam Mirzakouchaki 3
1 Ph.D Student, Mechanical Engineering Department, Sahand University of Technology, Tabriz, Iran
2 Professor, Mechanical Engineering Department, Sahand University of Technology, Tabriz, Iran
3 Associate Professor, School of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
چکیده [English]

Nowadays, the use of dental implants in people with osteoporosis is increasing. The consequences of osteoporosis can be important to the success of osteosynthesis devices, prosthetics and dental implants. Using bisphosphonates, which with impressing bone remodeling and decreasing bone catabolic activity lead to increase bone formation can be used as a solution to increase bone density in patients with osteoporosis, which normally osteoporosis is considered as a risk to the acceptance of dental implants by alveolar bone. This study examines the effect of different concentrations of bisphosphonates on bone remodeling. By improving bone remodeling model and taking into account the drug concentration effect on bone resorption, drug effect will be considered. For this purpose, 5, 10 and 20 mg of alendronate per implant and control sample are simulated for a period of 360 days. By comparing the results with control sample, with increasing the drug dose, decrease in bone stress, increase in bone density and thus increase in young's modulus was observed.

کلیدواژه‌ها [English]

  • osteoporosis
  • Drug Delivery
  • dental implant
  • alveolar
  • bone remodeling

[1]     Giro, G., et al., Impact of osteoporosis in dental implants: A systematic review. World journal of orthopedics, 2015. 6(2): p. 311.

[2]     Friedlander, A.H., The physiology, medical management and oral implications of menopause. The Journal of the American Dental Association, 2002. 133(1): p. 73-81.

[3]     Augat, P., et al., Mechanics and mechano-biology of fracture healing in normal and osteoporotic bone. Osteoporosis international, 2005. 16(2): p. S36-S43.

[4]     Notelovitz, M., et al., Estrogen therapy and variable‐resistance weight training increase bone mineral in surgically menopausal women. Journal of Bone and Mineral Research, 1991. 6(6): p. 583-590.

[5]     Rodan, G.A. and H.A. Fleisch, Bisphosphonates: mechanisms of action. Journal of Clinical Investigation, 1996. 97(12): p. 2692.

[6]     Grant, B.-T., et al., Outcomes of placing dental implants in patients taking oral bisphosphonates: a review of 115 cases. Journal of Oral and Maxillofacial Surgery, 2008. 66(2): p. 223-230.

[7]     Famili, P., Oral Bisphosphonates and Relationship to ONJ and Dental Implants. Dentistry, 2014. 4(1): p. 1.

[8]     Stadelmann, V.A., et al., Implants delivering bisphosphonate locally increase periprosthetic bone density in an osteoporotic sheep model. A pilot study. e Cells and Materials, 2008. 16(LBO-ARTICLE-2008-018): p. 10-16.

[9]     Peter, B., et al., Local delivery of bisphosphonate from coated orthopedic implants increases implants mechanical stability in osteoporotic rats. Journal of biomedical materials research Part A, 2006. 76(1): p. 133-143.

[10] Peter, B., et al., Calcium phosphate drug delivery system: influence of local zoledronate release on bone implant osteointegration. Bone, 2005. 36(1): p. 52-60.

[11] Peter, B., Orthopedic implants used as drug delivery systems: numerical, in vitro and in vivo studies. 2004, École Polytechnique Fédérale de Lausanne.

[12] Merdji, A., et al., Stress analysis in dental prosthesis. Computational materials science, 2010. 49(1): p. 126-133.

[13] Huang, H.-L., et al., Biomechanical simulation of various surface roughnesses and geometric designs on an immediately loaded dental implant. Computers in biology and medicine, 2010. 40(5): p. 525-532.

[14] Şimşek, B., et al., Effects of different inter-implant distances on the stress distribution around endosseous implants in posterior mandible: a 3D finite element analysis. Medical engineering & physics, 2006. 28(3): p. 199-213.

[15] Pegoretti, A. and C. Migliaresi, Effect of hydrothermal aging on the thermo-mechanical properties of a composite dental prosthetic material. Polymer composites, 2002. 23(3): p. 342.

[16] Li, J., et al., A mathematical model for simulating the bone remodeling process under mechanical stimulus. Dental Materials, 2007. 23(9): p. 1073-1078.

[17] An, Y.H. and R.A. Draughn, Mechanical testing of bone and the bone-implant interface. 1999: CRC press.

[18] Doblaré, M. and J. Garcıa, Anisotropic bone remodelling model based on a continuum damage-repair theory. Journal of biomechanics, 2002. 35(1): p. 1-17.

[19] Beaupre, G., T. Orr, and D. Carter, An approach for time‐dependent bone modeling and remodeling—application: A preliminary remodeling simulation. Journal of Orthopaedic Research, 1990. 8(5): p. 662-670.

[20] Peter, B., et al., Peri-implant bone remodeling after total hip replacement combined with systemic alendronate treatment: a finite element analysis. Computer methods in biomechanics and biomedical engineering, 2004. 7(2): p. 73-78.

[21] Martin, R.B., Porosity and specific surface of bone. Critical reviews in biomedical engineering, 1983. 10(3): p. 179-222.

[22] Mengoni, M., On the development of an integrated bone remodeling law for orthodontic tooth movements models using the Finite Element Method. 2012.

[23] Sotto-Maior, B.S., et al., Evaluation of bone remodeling around single dental implants of different lengths: a mechanobiological numerical simulation and validation using clinical data. Computer methods in biomechanics and biomedical engineering, 2016. 19(7): p. 699-706.

[24] Rüberg, T., Computer simulation of adaptive bone remodeling. Master's thesis, Centro Politécnico Superior Zaragoza, Technische Universit• at Braunschweig, 2003.

[25] Pioletti, D.P. and L.R. Rakotomanana, Can the increase of bone mineral density following bisphosphonates treatments be explained by biomechanical considerations? Clinical Biomechanics, 2004. 19(2): p. 170-174.

[26] Fleisch, H., The bisphosphonate ibandronate, given daily as well as discontinuously, decreases bone resorption and increases calcium retention as assessed by45ca kinetics in the intact rat. Osteoporosis international, 1996. 6(2): p. 166-170.

[27] Chavassieux, P.M., et al., Histomorphometric assessment of the long-term effects of alendronate on bone quality and remodeling in patients with osteoporosis. Journal of Clinical Investigation, 1997. 100(6): p. 1475.

[28] Van Steenberghe, D., et al., The relative impact of local and endogenous patient‐related factors on implant failure up to the abutment stage. Clinical oral implants research, 2002. 13(6): p. 617-622.

[29] Lugero, G.G., et al., Histomorphometric evaluation of titanium implants in osteoporotic rabbits. Implant dentistry, 2000. 9(4): p. 303&hyhen.

[30] Meraw, S.J. and C.M. Reeve, Qualitative analysis of peripheral peri-implant bone and influence of alendronate sodium on early bone regeneration. Journal of periodontology, 1999. 70(10): p. 1228-1233.

[31] Meraw, S.J., C.M. Reeve, and P.C. Wollan, Use of alendronate in peri-implant defect regeneration. Journal of periodontology, 1999. 70(2): p. 151-158.

[32] Starck, W.J. and B.N. Epker, Failure of osseointegrated dental implants after diphosphonate therapy for osteoporosis: a case report. International Journal of Oral & Maxillofacial Implants, 1995. 10(1).

[33] Ezra, A., et al., A peptide prodrug approach for improving bisphosphonate oral absorption. Journal of medicinal chemistry, 2000. 43(20): p. 3641-3652.