تشخیص تومور مغزی با استفاده از ویژگی‌های خطی و غیرخطی سیگنال‌های الکتروانسفالوگرام

نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 دانش‌آموخته‌ی کارشناسی ارشد، گروه بیوالکتریک، دانشکده مهندسی برق و کامپیوتر، دانشگاه تربیت‌مدرس، تهران دانشجوی دکتری مهندسی پزشکی، گروه بیوالکتریک، دانشکده مهندسی پزشکی، دانشگاه صنعتی امیرکبیر، تهران

2 استاد، گروه فیزیک پزشکی، دانشکده علوم پزشکی، دانشگاه تربیت مدرس، تهران

3 پژوهشگر فرادکتری، گروه فیزیک پزشکی، دانشکده علوم پزشکی، دانشگاه تربیت مدرس، تهران

4 دانشیار گروه جراحی اعصاب، بیمارستان لقمان حکیم، دانشگاه علوم پزشکی شهید بهشتی، تهران

5 استادیار گروه رادیوتراپی، بیمارستان امام حسین (ع)، دانشگاه علوم پزشکی شهید بهشتی، تهران

6 استادیار گروه نورولوژی، بیمارستان لقمان حکیم، دانشگاه علوم پزشکی شهید بهشتی، تهران

10.22041/ijbme.2017.72077.1260

چکیده

در پژوهش حاضر، سیگنال­های الکتروانسفالوگرام بیماران مبتلا به تومور مغزی و افراد سالم را برای مطالعة تغییرات ناشی از بروز تومور مغزی در سیگنال­های مغزی و در‌نهایت امکان­سنجی تشخیص این بیماری توسط سیگنال­های EEG، بررسی کرده‌ایم. برای این منظور از داده‌های EEG ثبت­شده از چهار کانال F3، F4، T3 و T4 برای پنج فرد مبتلا به تومور مغزی و چهار فرد سالم، استفاده شده است. پس از پیش‌‌پردازش، ویژگی­های خطی زمانی و طیف فرکانسی و ویژگی­های غیرخطی بُعد فرکتال و آنتروپی، استخراج شد. سپس تمایزپذیری میان دو گروه، با استفاده از اندیس دیویس-بولدین، طبقه‌بندی خطی LDA، غیرخطی KNN و SVM بررسی شد. بر‌اساس مقادیر به‌دست‌آمده برای اندیس دیویس-بولدین در وضعیت استراحت ذهنی چشم­بسته، ویژگی­های RMS، توان مطلق باند تتا، آنتروپی ­نمونه و آنتروپی تقریبی و در وضعیت استراحت ذهنی چشم­باز، ویژگی­های RMS و توان مطلق باند تتا، بیشترین تمایزپذیری را میان دو گروه سالم و بیمار نشان دادند. در این مرحله، طبقه­بندی دو گروه سالم و بیمار با استفاده از تک­ویژگی­ها انجام شد، که بهترین صحت طبقه­بندی مربوط به ویژگی RMS در حالت استراحت ذهنی چشم­بسته و 88.89% به‌دست آمد. این موضوع نشان­دهندة این است که ویژگی خطی RMS در افراد سالم و مبتلایان به تومور مغزی، تمایز خوبی ایجاد می­کند. در پایان نیز برای دو حالت استراحت ذهنی چشم­بسته و چشم­باز و با استفاده از تمامی ویژگی­های منتخب، طبقه‌بندی انجام شد. با توجه به نتایج، بیشترین صحت طبقه­بندی 82.54% با استفاده از ویژگی­های برتر RMS، توان مطلق باند تتا، آنتروپی ­نمونه و آنتروپی تقریبی در حالت استراحت ذهنی چشم­بسته، به‌دست آمد. با توجه به نتایج مشاهده می­شود که ویژگی­های خطی، قابلیت خوبی برای جداسازی سیگنال­های EEG افراد سالم و بیماران مبتلا به تومور مغزی دارند، که می‌توان از آنها، به‌دلیل سادگی و بار محاسباتی کم، برای تشخیص برخط بیماری تومور مغزی، به‌خصوص در آزمون­های دوره­ای غربالگری، استفاده کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Brain Tumor Detection Using Electroencephalogram Linear and Non-Linear Features

نویسندگان [English]

  • Zahra Tabanfar 1
  • Seyed Mohammad Firouzabadi 2
  • Zeynab Shankaei 3
  • Giv Sharifi 4
  • Kambiz Novin 5
  • Anahita Zoghi 6
1 M.Sc. Graduated Student, Department of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran Ph.D Student, Bioelectric Department, Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran
2 Professor, Medical Physics Department, School of Medical Science, Tarbiat Modares University, Tehran, Iran
3 Postdoctoral Researcher, Medical Physics Department, School of Medical Science, Tarbiat Modares University, Tehran, Iran
4 Department of Neurosurgery, Loghman e Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
5 Department of Radiation Oncology, Emam Hossein Medical center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
6 Department of Neurology, Loghman e Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
چکیده [English]

In this research, we analyzed the EEG signals of patients with brain tumor and healthy participants in order to study the effects of brain tumor on brain signals and also the feasibility of brain tumor detection using EEG signals. For this reason, EEG signals of four channel F3, F4, T3 and T4 from 5 patients with brain tumor and 4 healthy participants were recorded. After preprocessing, linear features in time and frequency domains and nonlinear ones such as fractal dimensions and entropies were extracted. Afterwards, the differentiation between2 groups was analyzed using Davies-Bouldin Index, LDA, KNN and SVM classifiers. According to the results of Davies-Bouldin Index, RMS, Theta Absolute Power, Approximate Entropy and Sample Entropy features in resting state with eyes closed and RMS and Theta Absolute Power features in resting state with eyes opened, had the most distinction between the two groups. In this stage classification of two groups using single features was done and the most accuracy of 88.89% was obtained for RMS feature in resting state with eyes closed. At the end, classification of two groups using all selected features was conducted and the maximum accuracy of 82.54% was obtained for RMS, Theta Absolute Power, Approximate Entropy and Sample Entropy features in resting state with eyes closed. According to the results, EEG linear features have a good capability of detecting brain tumor. As these features are simple and have low computational complexity, they can be used in online applications especially for periodic screening tests.

کلیدواژه‌ها [English]

  • Brain Tumor Detection
  • Electroencephalogram Signals
  • Davies-Bouldin Index
  • Linear and Non-Linear Features of EEG Signals

[1]     Sharanreddy, M. and P. Kulkarni, Can EEG Test Helps in Identifying Brain Tumor. International Journal of Medical, Pharmaceutical Science and Engineering, 2013. 7(11): p. 230-235.

[2]     Bateman, T.M., Advantages and disadvantages of PET and SPECT in a busy clinical practice. Journal of Nuclear Cardiology, 2012. 19(1): p. 3-11.

[3]     Kanne, J.P. and T.A. Lalani, Role of computed tomography and magnetic resonance imaging for deep venous thrombosis and pulmonary embolism. Circulation, 2004. 109(12 suppl 1): p. I-15-I-21.

[4]     Mindel, J., H.B. Newton, and J.L. Moore. The Neurophysiology of Central Nervous System Tumors. in Elsevier Inc. 2015.

[5]     Martino, J., et al., Resting functional connectivity in patients with brain tumors in eloquent areas. Annals of neurology, 2011. 69(3): p. 521-532.

[6]     Jochmann, T., et al., Influence of tissue conductivity changes on the EEG signal in the human brain–A simulation study. Zeitschrift für Medizinische Physik, 2011. 21(2): p. 102-112.

[7]     Poulos, M., T. Felekis, and A. Evangelou, Is it possible to extract a fingerprint for early breast cancer via EEG analysis? Medical hypotheses, 2012. 78(6): p. 711-716.

[8]     Poulos, M., et al., Endometrial Cancer Recognition via EEG Dependent upon 14-3-3 Protein Leading to an Ontological Diagnosis. World Academy of Science, Engineering and Technology, International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering, 2009. 3(7): p. 143-150.

[9]     Decker, D.A. and J.R. Knott, The EEG in intrinsic supratentorial brain tumors: a comparative evaluation. Electroencephalography and clinical neurophysiology, 1972. 33(3): p. 303-310.

[10] Karameh, F.N. and M.A. Dahleh. Automated classification of EEG signals in brain tumor diagnostics. in American Control Conference, 2000. Proceedings of the 2000. 2000. IEEE.

[11] Jiang, Z., et al., Impaired fMRI activation in patients with primary brain tumors. Neuroimage, 2010. 52(2): p. 538-548.

[12] Boldyreva, G., et al., Analysis of fMRI-EEG data in patients with brain tumors during hand motor tasks. International Journal of Psychophysiology, 2010. 77(3): p. 321.

[13] B Sharanreddy, P.K.K., Detection of Primary Brain Tumor Present in EEG signal using Wavelet Transform and Neural Network. International Journal of Biological & Medical Research, 2013: p. 2855-2859.

[14] Zahra Tabanfar, S.M.F., Zeinab Shankayi, Guive Sharifi, Anahita Zoghi, Kambiz Novin, Does Brain Tumor Affect Brain Dynamics? , in 7th International Conference of Cognitive Science. 2017.

[15] Silipo, R., G. Deco, and H. Bartsch, Brain tumor classification based on EEG hidden dynamics. Intelligent Data Analysis, 1999. 3(4): p. 287-306.

[16] Dolisi, C., G. Suisse, and E. Delpont, Quantitative EEG abnormalities and asymmetries in patients with intracranial tumors. Electroencephalography and clinical Neurophysiology,1990. 76(1): P13-18

[17] Chetty, S. and G.K. Venayagamoorthy, An investigation into the Detection of brain tumours using electroencephalography (EEG) signals with Artificial neural networks. Computational Intelligence Group.

[18] Murugesan, M. and R. Sukanesh. Automated detection of brain tumor in EEG signals using artificial neural networks. in Advances in Computing, Control, & Telecommunication Technologies, 2009. ACT'09. International Conference on. 2009. IEEE.

[19] Zahra Tabanfar, S.M.F., Zeynab Khodakarami, Zeinab Shankayi, Resting State EEG Analysis In Patients With Brain Tumor. Biotechnology Tarbiat Modares University (Biquarterly Publication), 2017: p. (In Press).

[20] Sharanreddy, M. and P. Kulkarni, Brain tumor epilepsy seizure identification using multi-wavelet transform, neural network and clinical diagnosis data. International Journal of Computer Applications, 2013. 67(2).

[21] Snaith, R.P., The hospital anxiety and depression scale. Health and quality of life outcomes, 2003. 1(1): p. 29.

[22] Urigüen, J.A. and B. Garcia-Zapirain, EEG artifact removal—state-of-the-art and guidelines. Journal of neural engineering, 2015. 12(3): p. 031001.

[23] Acharya, U.R., et al., Application of entropies for automated diagnosis of epilepsy using EEG signals: a review. Knowledge-Based Systems, 2015. 88: p. 85-96.

[24] Katebi, S. and M. Sabeti. Complexity measure as a feature to classify schizophrenic and healthy participants. in Computer Modelling and Simulation (UKSim), 2012 UKSim 14th International Conference on. 2012. IEEE.

[25] Naji, M., M. Firoozabadi, and S. Kahrizi. Evaluation of EMG features of trunk muscles during flexed postures. in Biomedical Engineering (ICBME), 2012 19th Iranian Conference of. 2012. IEEE.

[26] Chaovalitwongse, W.A., Y.-J. Fan, and R.C. Sachdeo, On the time series $ k $-nearest neighbor classification of abnormal brain activity. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2007. 37(6): p. 1005-1016.

[27] Bhardwaj, A., et al. Classification of human emotions from EEG signals using SVM and LDA Classifiers. in Signal Processing and Integrated Networks (SPIN), 2015 2nd International Conference on. 2015. IEEE.

[28] Kotsiantis, S.B., I. Zaharakis, and P. Pintelas, Supervised machine learning: A review of classification techniques. 2007.

[29] Başar, E., et al., Gamma, alpha, delta, and theta oscillations govern cognitive processes. International journal of psychophysiology, 2001. 39(2): p. 241-248.

[30] Dinstein, I., D.J. Heeger, and M. Behrmann, Neural variability: friend or foe? Trends in cognitive sciences, 2015. 19(6): p. 322-328.

[31] Plante, D.T., et al., Altered slow wave activity in major depressive disorder with hypersomnia: a high density EEG pilot study. Psychiatry Research: Neuroimaging, 2012. 201(3): p. 240-244.

[32] Kumar, Y., M.L. Dewal, and R.S. Anand. Features extraction of EEG signals using approximate and sample entropy. in Electrical, Electronics and Computer Science (SCEECS), 2012 IEEE Students' Conference on. 2012.