تحلیل دینامیکی و دوشاخگی‌های مدل تودة نورونی جانسن-ریت و کاربرد آن در توصیف حملات صرعی

نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 دانشجوی کارشناسی‌ارشد مهندسی مکانیک، گروه دینامیک، ارتعاشات و کنترل، دانشکده مهندسی مکانیک، دانشگاه علم‌و‌صنعت ایران، تهران

2 استاد، گروه دینامیک، ارتعاشات و کنترل، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران

10.22041/ijbme.2017.73555.1286

چکیده

امروزه با پیشرفت تکنولوژی و افزایش توان محاسباتی‏، استفاده از مدل‌های ریاضی برای توصیف کارکرد مغز در وضعیت‌های نرمال و غیر‌نرمال‏، به‌ویژه بررسی عوامل شکل‌گیری و شیوه‌های کنترل و درمان برخی از بیماری‌های سیستم عصبی مانند صرع، بسیار رواج یافته و مدل‌های بسیاری برای شبیه‌سازی الگوهای ظاهر‌شده در سیگنال‌های مغزی این بیماران تکوین شده‌اند. یکی از پرکاربردترین انواع مدل‌سازی‌ها، مدل‌های تودة نورونی مانند مدل جانسن-ریت می‌باشند که در عین سادگی، می‌توانند برخی از الگوها و ریتم‌های مهم مغزی را شبیه‌سازی کنند. در این مقاله، سعی شده است تحلیل دینامیکی کاملی از این مدل ارائه شود. ابتدا معادلات مدل به نحوی تغییر داده‌ شده‌ که خروجی مدل، یکی از متغیر‌های حالت سیستم باشد؛ سپس با تعریف یک پارامتر زیستی جدید (نسبت بازدارش به انگیزش جمعیت‌های نورونی)، معادلات، بی‌بعد شده‌اند و دیاگرام دوشاخگی مدل بی‌بعد‌شده به‌ازای دو پارامتر ورودی و نسبت بازدارش به انگیزش، رسم شده و رفتارهای دینامیکی مدل، شامل دوشاخگی‌ها، دورة تناوب و فرکانس نوسانات و پاسخ‌های زمانی، بحث و بررسی قرار گرفته است. همچنین دربارة نمود دو رفتار مهم در مدل، یعنی نوسانات موجی‌شکل ضربه‌دار (اس.دبلیو.دی) و ریتم‌های آلفا، بحث شده است. در این مقاله، نشان داده شده است که چطور چنین مدل‌هایی می‌توانند توصیفی از بیماری‌های پیچیده‌ای مانند صرع را به‌دست دهند و مکانیزم‌های دینامیکی، که می‌توانند توصیف‌گر گذار از وضعیت نرمال به حملات صرعی باشند، نیز مطرح شده‌اند. نوآوری‌ این مقاله را می‌توان تعریف یک پارامتر جدید معنادار و مهم زیستی در مدل بی‌بعد‌شده دانست، که تمام تحلیل‌های دینامیکی بر‌اساس آن انجام شده است. همچنین برخی دوشاخگی‌ها و به‌دنبال آن، برخی از رفتارهای مشاهده‌شده در مدل، برای اولین بار است که گزارش می‌شوند. به‌علاوه، این پارامتر جدید خود شامل دو پارامتر مدل اولیه بوده و به این ترتیب، تأثیر سه پارامتر به‌طور همزمان در رفتار سیستم بررسی شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Dynamical Analysis and Bifurcations of Jansen-Rit's Neural-Mass Model and Its Application in Describing Epileptic Seizures

نویسندگان [English]

  • Mohammad Reza Khodabakhshi 1
  • Amir Hossein Davaie Markazi 2
1 M.Sc. Student, Dynamics, Vibrations & Control Department, Mechanical Engineering Faculty, Iran University of Science and Technology, Tehran, Iran
2 Professor, Dynamics, Vibrations & Control Department, Mechanical Engineering Faculty, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

Nowadays, with technological advancements and increasing computing power, the use of mathematical models to describe the functioning of the brain in normal and abnormal manners, especially the study of the formation causes and methods of controlling and treating some nervous system diseases, such as epilepsy, have become widespread and many models have been developed to simulate patterns appearing in the brain signals of these patients. One of the most commonly used types of modeling is neural mass models such as the Jansen-Rit model that those can simulate some of the essential brain patterns and rhythms that appear in the brain recorded signals. Therefore, in this paper, we have tried to provide a complete dynamical analysis of the Jansen-Rit model. To analyze this model, first, the equations of the model have been changed so that the output of the model be one of the system states variables. Then, the new equations have been nondimensionalized by defining a biological parameter (proportion of inhibition to excitation in neural populations of the model). In the following, the bifurcation diagram of the dimensionless model has been plotted with respect to nondimensional input and inhibition to excitation proportion parameters (codimension-two bifurcation) and the dynamical behavior of the system, such as bifurcations, periods and frequency of the limit cycles and time responses, have been investigated. Further, we have discussed two significant behaviors in this model, spike-and-wave discharges (SWDs) and alpha rhythms. In the present paper, we have been shown how these models can describe complex disease such as epilepsy and have been mentioned dynamical mechanism underlying transition from a normal state (background activity) to an abnormal situation (epileptic seizures). The innovations of this study one can be the definition of the new meaningful and significant biological parameter in the dimensionless model that all dynamical analysis are based on it. Also, some bifurcations and, consequently, some of the behaviors observed in the model are for the first time reported. Moreover, this new parameter contains two primary model parameters and then the effect of three parameters simultaneously in the system behavior has been investigated.

کلیدواژه‌ها [English]

  • Neural-Mass Models
  • Jansen-Rit Model
  • Codimension-Two Bifurcation
  • Spike-and-Wave Discharges (SWD)
  • Bistability

[1]     M. J. Zigmond, J. T. Coyle, and L. P. Rowland, “Epilepsy,” in Neurobiology of Brain Disorders: Biological Basis of Neurological and Psychiatric Disorders, Elsevier, 2014, p. 823.

[2]     M. J. England, C. T. Liverman, A. M. Schultz, and L. M. Strawbridge, Epilepsy across the spectrum: Promoting health and understanding.: A summary of the Institute of Medicine report, vol. 25, no. 2. Elsevier, 2012.

[3]     N. Chakravarthy, “A Feedback Systems Perspective for Modeling and Controlling Epileptic Seizures,” Arizona State University, 2007.

[4]     W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, “Neuronal populations,” in Neuronal dynamics: From single neurons to networks and models of cognition, Cambridge University Press, 2014.

[5]     H. R. Wilson and J. D. Cowan, “Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons,” Biophys. J., vol. 12, no. 1, pp. 1–24, 1972.

[6]     W. J. Freeman, “Mass action in the nervous system,” Neuroscience, vol. 1, no. 5, p. 423, 1976.

[7]     F. H. da Silva, A. Hoeks, and L. H. Zetterberg, “Model of brain rhythmic activity, The Alpha-Rhythmof the Thalamus,” Kybernetik, vol. 15, no. 1, pp. 27–37, 1974.

[8]     B. H. Jansen and V. G. Rit, “Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns,” Biol. Cybern., vol. 73, no. 4, pp. 357–366, 1995.

[9]     W. J. Freeman, “Petit mal seizure spikes in olfactory bulb and cortex caused by runaway inhibition after exhaustion of excitation,” Brain Res. Rev., vol. 11, no. 3, pp. 259–284, 1986.

[10] F. Wendling, J. J. Bellanger, F. Bartolomei, and P. Chauvel, “Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals.,” Biol. Cybern., vol. 83, no. 4, pp. 367–378, 2000.

[11] F. Wendling, F. Bartolomei, J. J. Bellanger, and P. Chauvel, “Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition,” Eur. J. Neurosci., vol. 15, no. 9, pp. 1499–1508, May 2002.

[12] F. Wendling, A. Hernandez, J.-J. Bellanger, P. Chauvel, and F. Bartolomei, “Interictal to ictal transition in human temporal lobe epilepsy: insights from a computational model of intracerebral EEG.,” J. Clin. Neurophysiol., vol. 22, no. 5, pp. 343–56, Oct. 2005.

[13] P. Suffczynski, “Neural dynamics underlying brain thalamic oscillations investigated with computational models,” University of Warsaw, 2000.

[14] P. Suffczynski, S. Kalitzin, G. Pfurtscheller, and F. H. Lopes Da Silva, “Computational model of thalamo-cortical networks: Dynamical control of alpha rhythms in relation to focal attention,” Int. J. Psychophysiol., vol. 43, no. 1, pp. 25–40, 2001.

[15] C. Stam, J. Pijn, P. Suffczynski, and F. L. Da Silva, “Dynamics of the human alpha rhythm: evidence for non-linearity?,” Clin. Neurophysiol., vol. 110, no. 10, pp. 1801–1813, 1999.

[16] F. Lopes da Silva, W. Blanes, S. N. Kalitzin, J. Parra, P. Suffczynski, and D. N. Velis, “Epilepsies as dynamical diseases of brain systems: basic models of the transition between normal and epileptic activity.,” Epilepsia, vol. 44, no. S12, pp. 72–83, 2003.

[17] P. Suffczynski, S. Kalitzin, and F. H. Lopes Da Silva, “Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network,” Neuroscience, vol. 126, no. 2, pp. 467–484, Jan. 2004.

[18] P. Suffczynski, L. da S. F, J. Parra, D. Velis, and S. Kalitzin, “Epileptic transitions: model predictions and experimental validation.,” J. Clin. Neurophysiol., vol. 22, no. 5, pp. 288–299, 2005.

[19] F. Grimbert and O. Faugeras, “Bifurcation analysis of Jansen’s neural mass model.,” Neural Comput., vol. 18, no. 12, pp. 3052–3068, 2006.

[20] F. Grimbert and O. Faugeras, “Analysis of Jansen’ s model of a single cortical column,” 2006.

[21] J. Touboul and O. Faugeras, “Codimension Two Bifurcations and Rythms in Neural Mass Models,” arXiv Prepr. arXiv0907.2718, pp. 1–50, 2009.

[22] J. Touboul, F. Wendling, P. Chauvel, and O. Faugeras, “Neural mass activity, bifurcations, and epilepsy.,” Neural Comput., vol. 23, no. 12, pp. 3232–86, 2011.

[23] M. Goodfellow, K. Schindler, and G. Baier, “Intermittent spike-wave dynamics in a heterogeneous, spatially extended neural mass model,” Neuroimage, vol. 55, no. 3, pp. 920–932, 2011.

[24] G. Baier, M. Goodfellow, P. N. Taylor, Y. Wang, and D. J. Garry, “The importance of modeling epileptic seizure dynamics as spatio-temporal patterns.,” Front. Physiol., vol. 3, no. July, p. 281, 2012.

[25] A. Spiegler, S. J. Kiebel, F. M. Atay, and T. R. Knösche, “Bifurcation analysis of neural mass models: Impact of extrinsic inputs and dendritic time constants,” Neuroimage, vol. 52, no. 3, pp. 1041–1058, 2010.

[26] F. Shayegh, R. A. Fattahi, S. Sadri, and K. Ansari-Asl, “A Brief Survey of Computational Models of Normal and Epileptic EEG Signals: A Guideline to Model-based Seizure Prediction.,” J. Med. Signals Sens., vol. 1, no. 1, pp. 62–72, 2011.

[27] F. Shayegh, J.-J. Bellanger, S. Sadri, R. Amirfattahi, K. Ansari-Asl, and L. Senhadji, “Analysis of the behavior of a seizure neural mass model using describing functions.,” J. Med. Signals Sens., vol. 3, no. 1, pp. 2–14, 2013.

[28] F. Wendling, F. Bartolomei, F. Mina, C. Huneau, and P. Benquet, “Interictal spikes, fast ripples and seizures in partial epilepsies - combining multi-level computational models with experimental data,” Eur. J. Neurosci., vol. 36, no. 2, pp. 2164–2177, 2012.

[29] D. R. Freestone, D. Nesic, A. Jafarian, M. J. Cook, and D. B. Grayden, “A neural mass model of spontaneous burst suppression and epileptic seizures,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 5942–5945, 2013.

[30] F. Cona, M. Lacanna, and M. Ursino, “A thalamo-cortical neural mass model for the simulation of brain rhythms during sleep,” J. Comput. Neurosci., vol. 37, no. 1, pp. 125–148, 2014.

[31] S. Geng, W. Zhou, X. Zhao, Q. Yuan, Z. Ma, and J. Wang, “Bifurcation and oscillation in a time-delay neural mass model,” Biol. Cybern., vol. 108, no. 6, pp. 747–756, 2014.

[32] A. López-Cuevas, B. Castillo-Toledo, L. Medina-Ceja, and C. Ventura-Mejía, “State and Parameter Estimation of a Neural Mass Model from Electrophysiological Signals during Induced Status Epilepticus,” Neuroimage, vol. 113, pp. 374–386, 2015.

[33] M. Chehelcheraghi, C. Nakatani, E. Steur, and C. van Leeuwen, “A neural mass model of phase–amplitude coupling,” Biol. Cybern., vol. 110, no. 2–3, pp. 171–192, 2016.

[34] M. Amiri, F. Bahrami, and M. Janahmadi, “On the role of astrocytes in epilepsy: A functional modeling approach,” Neurosci. Res., vol. 72, no. 2, pp. 172–180, 2012.

[35] J. Ziburkus, J. R. Cressman, and S. J. Schiff, “Seizures as imbalanced up states: excitatory and inhibitory conductances during seizure-like events,” J. Neurophysiol., vol. 109, no. 5, pp. 1296–1306, 2013.

[36] J.-M. Fritschy, “E/I balance and GABAA receptor plasticity,” Front. Mol. Neurosci., vol. 1, no. March, 2008.

[37] D. M. Treiman, “GABAergic mechanisms in epilepsy,” Epilepsia, vol. 42, no. SUPPL. 3, pp. 8–12, 2001.

[38] M. Wong, “Too much inhibition leads to excitation in absence epilepsy.,” Epilepsy Curr., vol. 10, no. 5, pp. 131–132, 2010.