طراحی یک سیستم فازی عمیق مبتنی بر قاعده به منظور تعیین سطح افسردگی

نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی پزشکی، گروه بیوالکتریک، دانشکده‌ی مهندسی پزشکی، دانشگاه صنعتی امیرکبیر، تهران

2 استاد، گروه بیوالکتریک، دانشکده‌ی مهندسی پزشکی، دانشگاه صنعتی امیرکبیر، تهران

10.22041/ijbme.2018.85169.1353

چکیده

افسردگی یکی از شایع‌ترین اختلالات روانی عصر حاضر است که تشخیص زودهنگام شدت آن می‌تواند در روند درمان مفید باشد. یکی از روش‌های تشخیص این بیماری، تحلیل اطلاعات حاصل از سیگنال‌های الکتریکی مغزی می‌باشد. در این مقاله، به دنبال تمایز میان سطوح افسردگی با استفاده از تحلیل سیگنال مغزی هستیم. مدل پیشنهادی، سیستم عمیق مبتنی بر قاعده با استفاده از قابلیت پشته است و تمرکز روی تفسیرپذیری قواعد در کنار دقت بالا می‌باشد. سیستم‌های فازی قابلیت مناسبی را در طبقه‌بندی دادگان پزشکی با عدم قطعیت نشان داده‌اند. افزون بر این، در سال‌های اخیر یادگیری عمیق،  توجه ویژه‌ای را در حوزه‌ی هوش مصنوعی کسب کرده است. در این مقاله به دنبال بهره‌گیری از قابلیت‌های هر دو رویکرد، در قالب یک سیستم فازی عمیق هستیم. سیستم پیشنهادی از یک رویکرد خوشه‌بندی مقاوم  بهره می‌برد که قادر است تعداد خوشه‌های بهینه برای هر لایه را به صورت بدون سرپرست تعیین نماید. در کنار آن، مدل پیشنهادی از یک ساختار سلسله‌مراتبی پشته‌ای بهره می‌برد، به این صورت که قواعد آموزش‌یافته‌ی تفسیرپذیر در لایه‌ی اول را با برچسب‌های زبانی یک‌سان برای تمام ورودی‌ها، به صورت خروجی لایه‌ی اول در کنار ورودی، به لایه‌ی بعد منتقل نماید. وجود خروجی قواعد لایه‌های قبل در فضای ورودی لایه‌های بعد معادل قابلیت اطمینان در سیستم فازی با تالی خطی یا یک سیستم فازی با تالی غیرخطی می‌باشد. دادگان مورد استفاده پس از پیش‌پردازش، استخراج ویژگی‌های زمانی، فرکانسی و غیرخطی نظیر بعد نگاشت بازگشتی و کاهش بعد، به سیستم پیشنهادی ارائه شد. سیستم پیشنهادی با طبقه‌بندهای متداول نظیر شبکه‌ی عصبی، ماشین بردار پشتیبان، بیز ساده، درخت تصمیم و آنالیز افتراقی خطی مقایسه شد. نتایج صحت دادگان تست به دست آمده در 30 تکرار (۴۹.۰۱% در مقابل به ترتیب 32/41 %، 47/40%، 01/40%، 38/38% و 28/40%)، بیان‌گر قابلیت قابل توجه این مدل در تفکیک چهار سطح افسردگی می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Designing a Deep Fuzzy Rule-Based System for Depression Staging

نویسندگان [English]

  • Raheleh Davoodi 1
  • Mohammad Hasan Moradi 2
1 Ph.D Student, Bioelectric Department, Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran
2 Professor, Bioelectric Department, Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran
چکیده [English]

Depression is one of the most common mental disorders in the current century where early diagnosis can result in better treatment. One of the depression diagnostic methods is the analysis of the brain electrical signals. In this paper, we are seeking for a method to distinguish among the levels of the depression. The proposed model is a deep rule-based system based on the stacked principle and focuses on the interpretability of the rules alongside high accuracy. Fuzzy systems have the proper capability in the classification of medical data with various levels of uncertainty. Moreover, in the recent years, deep learning has been taken considerable attention in the field of Artificial Intelligence. In this paper, we aim to benefit from capabilities of both fields. The proposed architecture employs a robust fuzzy clustering approach that can determine an appropriate number of clusters in each layer, unsupervised and a hierarchical stacked structure to transfer the interpretable trained rules from the previous layers with the same linguistic labels to the next layer. The interpretability is due to the presence of the input space into the consequent ones. The presence of the output of the previous layer’s rules at the input space of the next parts equals to a fuzzy system with non-linear consequent or the certainty factor in a fuzzy system with linear consequent. EEG data were preprocessed and time, frequency and nonlinear features such as recurrent plot were extracted and selected and after that were employed in the proposed system. The proposed system was compared with common classifiers like Neural Net, Support Vector Machine, Naive Bayes, Decision Tree and Linear Discriminant Analysis. Accuracy results for the test data in 30 folds (49.01% in comparison to 41.42%, 40.47%, 40.01%, 38.35% and 40.28% respectively) demonstrate the considerable performance of the proposed system.

کلیدواژه‌ها [English]

  • Classification
  • Depression
  • Fuzzy Network
  • Deep Learning
[1]     “Depression and Other Common Mental Disorders Global Health Estimates.”

[2]     S. Tement, A. Pahor, and N. Jaušovec, “EEG alpha frequency correlates of burnout and depression: The role of gender,” Biol. Psychol., vol. 114, pp. 1–12, Feb. 2016.

[3]     W. Mumtaz, A. S. Malik, M. A. M. Yasin, and L. Xia, “Review on EEG and ERP predictive biomarkers for major depressive disorder,” Biomed. Signal Process. Control, vol. 22, pp. 85–98, Sep. 2015.

[4]     M. Mohammadi et al., “Data mining EEG signals in depression for their diagnostic value,” BMC Med. Inform. Decis. Mak., vol. 15, no. 1, p. 108, Dec. 2015.

[5]     İ. Güler and E. D. Übeyli, “Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients,” J. Neurosci. Methods, vol. 148, no. 2, pp. 113–121, Oct. 2005.

[6]     V. A. Grin-Yatsenko, I. Baas, V. A. Ponomarev, and J. D. Kropotov, “Independent component approach to the analysis of EEG recordings at early stages of depressive disorders,” Clin. Neurophysiol., vol. 121, no. 3, pp. 281–289, Mar. 2010.

[7]     S.-C. Liao, C.-T. Wu, H.-C. Huang, W.-T. Cheng, and Y.-H. Liu, “Major Depression Detection from EEG Signals Using Kernel Eigen-Filter-Bank Common Spatial Patterns,” Sensors, vol. 17, no. 6, p. 1385, Jun. 2017.

[8]     B. Hosseinifard, M. H. Moradi, and R. Rostami, “Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal,” Comput. Methods Programs Biomed., vol. 109, no. 3, pp. 339–345, Mar. 2013.

[9]     S. R. I. Gabran, S. Zhang, M. M. A. Salama, R. R. Mansour, and C. George, “Real-time automated neural-network sleep classifier using single channel EEG recording for detection of narcolepsy episodes,” in 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2008, pp. 1136–1139.

[10] Hanshu Cai, Xiaocong Sha, Xue Han, Shixin Wei, and Bin Hu, “Pervasive EEG diagnosis of depression using Deep Belief Network with three-electrodes EEG collector,” in 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2016, pp. 1239–1246.

[11] J. Zhang, C. Tao, and P. Wang, “A Review of Soft Computing Based on Deep Learning,” in 2016 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration (ICIICII), 2016, pp. 136–144.

[12] S. Zhou, Q. Chen, and X. Wang, “Fuzzy deep belief networks for semi-supervised sentiment classification,” Neurocomputing, vol. 131, pp. 312–322, May 2014.

[13] Y.-J. Zheng, W.-G. Sheng, X.-M. Sun, and S.-Y. Chen, “Airline Passenger Profiling Based on Fuzzy Deep Machine Learning,” IEEE Trans. Neural Networks Learn. Syst., vol. 28, no. 12, pp. 2911–2923, Dec. 2017.

[14] Y. Deng, Z. Ren, Y. Kong, F. Bao, and Q. Dai, “A Hierarchical Fused Fuzzy Deep Neural Network for Data Classification,” IEEE Trans. Fuzzy Syst., vol. 25, no. 4, pp. 1006–1012, Aug. 2017.

[15] R. Zhang, F. Shen, and J. Zhao, “A model with Fuzzy Granulation and Deep Belief Networks for exchange rate forecasting,” in 2014 International Joint Conference on Neural Networks (IJCNN), 2014, pp. 366–373.

[16] S. Park, S. J. Lee, E. Weiss, and Y. Motai, “Intra- and Inter-Fractional Variation Prediction of Lung Tumors Using Fuzzy Deep Learning,” IEEE J. Transl. Eng. Heal. Med., vol. 4, pp. 1–12, 2016.

[17] T. Zhou, F.-L. Chung, and S. Wang, “Deep TSK Fuzzy Classifier With Stacked Generalization and Triplely Concise Interpretability Guarantee for Large Data,” IEEE Trans. Fuzzy Syst., vol. 25, no. 5, pp. 1207–1221, Oct. 2017.

[18] R. Davoodi and M. H. Moradi, “Mortality prediction in intensive care units (ICUs) using a deep rule-based fuzzy classifier,” J. Biomed. Inform., vol. 79, 2018.

[19] A. Beck, R. Steer, G. B.-S. Antonio, and  undefined 1996, “Beck depression inventory-II,” m.blog.naver.com.

[20]  ب. حسینی. فرد, "تشخیص و جداسازی بیماران افسرده از افراد سالم با استفاده از سیگنال الکتروانسفالگرام", پایان نامه کارشناسی ارشد، دانشگاه صنعتی امیرکبیر، 1389.

[21] J.-P. Eckmann, S. O. Kamphorst, and D. Ruelle, “Recurrence Plots of Dynamical Systems,” Europhys. Lett., vol. 4, no. 9, pp. 973–977, Nov. 1987.

[22] U. R. Acharya, S. V. Sree, S. Chattopadhyay, W. Yu, and P. C. A. Ang, “Application of Recurrence Quantification Analysis for the Automated Identification of Epileptic EEG Signals,” Int. J. Neural Syst., vol. 21, no. 03, pp. 199–211, Jun. 2011.

[23] F. Bahari and A. Janghorbani, “EEG-based emotion recognition using Recurrence Plot analysis and K nearest neighbor classifier,” in 2013 20th Iranian Conference on Biomedical Engineering (ICBME), 2013, pp. 228–233.

[24] N. Marwan, M. Carmen Romano, M. Thiel, and J. Kurths, “Recurrence plots for the analysis of complex systems,” Phys. Rep., vol. 438, no. 5–6, pp. 237–329, Jan. 2007.

[25] L.J.P. van der Maaten. "Accelerating t-SNE using Tree-Based Algorithms," J. of Machine Learning Research, vol. 15, pp. 3221-3245, 2014.

[26] M.-S. Yang and Y. Nataliani, “Robust-learning fuzzy c-means clustering algorithm with unknown number of clusters,” Pattern Recognit., vol. 71, pp. 45–59, Nov. 2017.

[27] M.-S. Yang and Y. Nataliani, “Robust-learning fuzzy c-means clustering algorithm with unknown number of clusters,” Pattern Recognit., vol. 71, pp. 45–59, Nov. 2017.

[28] Shafer, “A Mathematical Theory of Evidence,” Books on Demand, 1976.

[29] M. Beynon, B. Curry, and P. Morgan, “The Dempster–Shafer theory of evidence: an alternative approach to multicriteria decision modelling,” Omega, vol. 28, no. 1, pp. 37–50, Feb. 2000.