اندازه‌گیری غیرتهاجمی میزان غلظت خون با استفاده از منابع نوری با طول موج‌های مختلف

نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی مکانیک، دانشکده‌ی مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران

2 استادیار، دانشکده‌ی مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران

10.22041/ijbme.2018.90842.1383

چکیده

با توجه به رشد بیماری‌های قلبی و عروقی در جهان، مانیتورینگ علایم حیاتی بدن، مانند ضربان قلب، درصد اکسیژن و فشار خون، به امری ضروری بدل شده است. در سال‌های اخیر، استفاده از سیگنال فوتوپلتیسموگرافی تصویری برای اندازه‌گیری علایم حیاتی، همواره یکی از موضوع‌های مورد علاقه‌ی محققان بوده است. بیماری آنمی یا کم‌خونی یکی از بیماری­های شایع، به خصوص در میان زنان، به شمار می‌رود که ناشی از کاهش مقدار هموگلوبین خون می‌باشد. در این مقاله، با استفاده از روش­ فوتوپلتیسموگرافی تصویری، که روشی  نوین برای شناخت انواع مختلف بیماری‌ها است، میزان درصد هموگلوبین خون، با یک مقدار مطلوب، توسط بستر فیزیکی ساخته شده و اجرای الگوریتم پیشنهاد داده شده، تخمین زده می‌شود. در این روش، ابتدا از نبض قابل مشاهده‌ی نوک انگشت اشاره‌ی انسان، به کمک منابع تامین کننده‌ی نور، با طول موج‌های سفید، 520 و 980 نانومتر، فیلم‌برداری شده است. در مرحله‌ی بعد، پس از به دست آوردن سیگنال‌های نبض با توجه به منابع نوری با طول موج معین، عمل پیش‌پردازش روی سیگنال‌ها انجام شده و بر اساس سیگنال فوتوپلتیسموگرافی به دست آمده از تصاویر، ویژگی‌های زمانی مبتنی بر فیزیک مساله، استخراج شده است. در مرحله‌ی نهایی، به کمک برازش منحنی ماشین بردار پشتیبان، پیش‌بینی با دقت 82 درصد انجام شده که خود تاییدی بر صحت و درستی پیاده‌سازی الگوریتم پیشنهادی، با توجه به بستر فیزیکی ساخته شده، می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Noninvasive Measurement of Hemoglobin by Light Sources in Various Wavelengths

نویسندگان [English]

  • Seyed Hamid Reza Heidary 1
  • Mohammad Sajjad Sokout 1
  • Borhan Beigzadeh 2
1 M.Sc Student, Mechanical Department, Mechanical Engineering Faculty, Iran University of Science & Technology, Tehran, Iran
2 Assistant Professor, Mechanical Engineering Department, Iran University of Science & Technology, Tehran, Iran
چکیده [English]

Monitoring human body vital signs like heart rate, oxygen saturation and blood pressure, has a profound influence on recognition of cardiovascular diseases which are growing at unprecedented rate all over the world. In recent years, using imaging photoplethysmography (IPPG) signals is one of the most interesting issues among researchers to measure the vital signs of the human body. Decreasing the values of hemoglobin in blood, which is called Anemia, and it's more common among women, can be detected through the processing of the IPPG signals. In this article, the magnitude of hemogolobin level is measured by a suggested approach applied on the IPPG signals taken by means of a physical setup. To make the signals, after capturing video from the fingertip pulse of index right finger with various light sources in wavelengths consisting of white, 520nm and 980nm; the IPPG signals will be accessible as a result of applying the proposed algorithm on the videos. In the next step, providing appropriate signals to the implementation of the regarded method, the signals are preprocessed. Considering physics-based models, the time domain features are extracted. In the final step, utilizing the support vector regression, accuracy of the prediction is 82%, which is shown reliability, repeatability, and reproducibility of the designed configuration.

کلیدواژه‌ها [English]

  • vital signs
  • cardiovascular diseases
  • IPPG signals
  • hemoglobin
  • wavelengths
[1]     J. Rosenblit, C. Abreu, L. Szterling, “Evaluation of three methods for hemoglobin measurement in a blood donor setting,” Sao Paulo Medical Journal, vol. 117, no. 3, pp. 108-112, May. 1999.

[2]     W. Pothisarn, W. Chewpraditkul, P. P. Yupapin, “Noninvasive hemoglobin-measurement-based pulse oximetry,” in Optics in Health Care and Biomedical Optics: Diagnostics and Treatment, vol. 4916, no. 3, pp. 498-505, Sep. 2002.

[3]     P. C. Ward, “The CBC at the turn of the millennium: an overview,” Clinical chemistry, vol. 46, no. 8, pp. 1215-1220, Aug.2000.

[4]     E. Van Kampen, W. Zijlstra, “Spectrophotometry of hemoglobin and hemoglobin derivatives,” in Advances in clinical chemistry, Elsevier, vol. 23, pp. 199-257, April, 1983.

[5]     E. Van Kampen and W. Zijlstra, “Standardization of hemoglobinometry II. The hemiglobincyanide method,” Clinica chimica acta, vol. 6, no. 4, pp. 538-544, Jul. 1996.

[6]     Y. Sun and N. Thakor, “Photoplethysmography revisited: from contact to noncontact, from point to imaging,” IEEE Transactions on Biomedical Engineering, vol. 63, no. 3, pp. 463-477, Mar. 2016.

[7]     D. Swinehart, “The beer-lambert law,” Journal of chemical education, vol. 39, no. 7, p. 333, Jul. 1962.

[8]   J. Fortin et al., “Validation and verification of the Task Force Monitor,” Results of clinical studies for FDA, vol. 510, no. 1, pp. 1-7, Jun. 2001.

[9]     J. Fortin et al., “The Task Force Monitor—a non-invasive beat-to-beat monitor for hemodynamic and autonomic function of the human body,” in Proceedings of the 20th annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 29, Oct.1998.

[10] J. G. Webster, “Design of pulse oximeters,” CRC Press, Oct.1997.

[11] Abdallah, Omar, et al., “Concentrations of hemoglobin fractions calculation using modified Lambert-Beer law and solving of an ill-posed system of equations,” Biophotonics: Photonic Solutions for Better Health Care II., International Society for Optics and Photonics, Vol. 7715, May.2010.

[12] J. Kraitl, H. Ewald,  H. Gehring, “An optical device to measure blood components by a photoplethysmographic method,” Journal of Optics A: Pure and Applied Optics, vol. 7, no. 6, p. S318, May.2005.

[13] M. R. Macknet, M. Allard, R. L. Applegate, and J. Rook, “The accuracy of noninvasive and continuous total hemoglobin measurement by pulse CO-Oximetry in human subjects undergoing hemodilution,” Anesthesia & Analgesia, vol. 111, no. 6, pp. 1424-1426, Dec.2010.

[14] M. Azarnoosh, and H. Doostdar, “Assessment of Photoplethysmography Method in Extraction of Hemoglobin Concentration,” Journal of Biomedical Physics and Engineering, vol. 20, no. 2, pp. 6-15, Jan.2018.

[15] M.-Z. Poh, D. J. McDuff, and R. W. Picard, “Advancements in noncontact, multiparameter physiological measurements using a webcam,” IEEE transactions on biomedical engineering, vol. 58, no. 1, pp. 7-11, Jan.2011.

[16] S. Hu, V. A. Peris, A. Echiadis, J. Zheng, and P. Shi, “Development of effective photoplethysmographic measurement techniques: from contact to non-contact and from point to imaging,” in Engineering in Medicine and Biology Society. Annual International Conference of the IEEE, pp. 6550-6553, Sep.2009.

[17] E. Jonathan and M. Leahy, “Investigating a smartphone imaging unit for photoplethysmography,” Physiological measurement, vol. 31, no. 11, p. N79, Sep.2010.

[18] L. De Greef et al., “Bilicam: using mobile phones to monitor newborn jaundice,” in Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 331-342, Sep.2014.

[19] M. K. Hasan, N. Sakib, R. R. Love, and S. I. Ahamed, “RGB pixel analysis of fingertip video image captured from sickle cell patient with low and high level of hemoglobin,” in Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), IEEE 8th Annual, pp. 499-505, Oct.2017,

[20] M. J. Gregoski et al., “Development and validation of a smartphone heart rate acquisition application for health promotion and wellness telehealth applications,” International journal of telemedicine and applications, p. 1, Jan.2012.

[21]           A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Statistics and computing, vol. 14, no. 3, pp. 199-222, Aug.2004.

[22] E. J. Wang, W. Li, D. Hawkins, T. Gernsheimer, C. Norby-Slycord, and S. N. Patel, "HemaApp: noninvasive blood screening of hemoglobin using smartphone cameras," in Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 593-604, 2016.