نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 کارشناس ارشد مهندسی پزشکی، گروه بیوالکتریک، دانشکده‌ی مهندسی برق و کامپیوتر، دانشگاه صنعتی نوشیروانی بابل، بابل

2 استادیار، گروه بیوالکتریک، دانشکده‌ی مهندسی برق و کامپیوتر، دانشگاه صنعتی نوشیروانی بابل، بابل

10.22041/ijbme.2018.91846.1396

چکیده

روش شکل‌دهی پرتو چندپرتویی، یک روش پیاده‌سازی شکل‌دهی پرتو کم‌ترین واریانس، با پیچیدگی محاسباتی اندک است که در آن، به جای محاسبه‌ی ماتریس کوواریانس برای هر یک از نقاط تصویر و معکوس کردن آن، تنها یک ماتریس برای تمام نقاط واقع در فاصله‌ی شعاعی یک‌سان از مرکز آرایه، محاسبه می‌شود. سپس برای کاهش بیش‌تر پیچیدگی، مساله‌ی شکل‌دهی در فضای پرتو حل می‌شود. در این مقاله، یک روش دومرحله‌ای جدید برای کاهش پیچیدگی شکل‌دهی پرتو کم‌ترین واریانس، معرفی شده است که مخصوصا در حالت چندپرتویی، نسبت به روش فضای پرتو، دارای پیچیدگی محاسباتی کم‌تری می‌باشد. در مرحله‌ی اول این روش، به جای استفاده از سیگنال‌های تمام عناصر آرایه در محاسبه‌ی ماتریس کوواریانس، سیگنال‌های بخشی از عناصر آرایه انتخاب می‌شود، به گونه‌ای که ماتریس کوواریانس حاصل، تمام اطلاعات همبستگی سیگنال‌ها را در بر گیرد. در مرحله‌ی دوم، وزن‌های تمام عناصر آرایه، از طریق یک روش درون‌یابی وفقی تعیین می‌شود، به گونه‌ای که ضمن حفظ ویژگی رزولوشن خوب، کنتراست تصویر نیز بهبود یابد. شبیه‌سازی‌ها نشان می‌دهند که در حالت چندپرتویی، روش جدید از نظر رزولوشن، کنتراست و مقاوم بودن در مقابل خطاها، عمل‌کردی مشابه با روش شکل‌دهی در فضای پرتو دارد، در حالی که نسبت به آن روش، بار محاسباتی را تا بیش از 3 برابر، کاهش می‌دهد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

A New Fast Multi-Beam-Based Method for Adaptive Beamforming in Ultrasound Imaging

نویسندگان [English]

  • Hannaneh Keyhanian 1
  • Sayed Mahmoud Sakhaei 2

1 M.Sc. Student, Bioelectric Department, Electrical and Computer Engineering Faculty, Babol Noshirvani University of Technology, Babol, Iran

2 Assistant Professor, Bioelectric Department, Electrical and Computer Engineering Faculty, Babol Noshirvani University of Technology, Babol, Iran

چکیده [English]

The method of multi-beam beamforming is a low-computational adaptive beamforming method in which, instead of calculating the covariance matrix and inverting it for each point of the image, only one matrix is calculated for all points on the same radial distance. Then, to reduce the complexity of the inverse matrix calculation, the problem is solved in the beamspace domain. We introduce a new two-stage method to reduce the complexity of the minimum variance (MV) beamforming method, which outperforms the beamspace method in computational burden aspect in multi-beam method. In the first step, instead of using the signals of all array elements in calculating the covariance matrix, the signals of a decimated one are chosen such that the resulting covariance matrix contains all the correlation information of the signals. In the second stage, the weights of all elements of the array are determined by a proper interpolation method from the weights of the decimated array. According to the simulation results of point targets and cyst phantom, the new method has a performance similar to that of the beamspace multi-beam method in terms of resolution, contrast, and robustness against the errors with at least 3 times lower computational burden.

کلیدواژه‌ها [English]

  • ultrasound imaging
  • beamforming
  • multi-beam
  • nested array

[1]        F. W. Kremkau, Diagnostic ultrasound: principles and instruments. WB Saunders Company, 2001.

[2]        T. L. Szabo, Diagnostic ultrasound imaging: inside out. Academic Press, 2004.

[3]        J. F. Synnevag, A. Austeng, and S. Holm, "Adaptive beamforming applied to medical ultrasound imaging." IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 54, pp. 1606-1613, 2007.

[4]        I.K. Holfort, F. Gran, and J. A. Jensen, “Broadband minimum variance beamforming for ultrasound imaging,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 56, pp.314-325, 2009.

[5]        J. F. Synnevag, A. Austeng, and S. Holm, “Benefits of minimum-variance beamforming in medical ultrasound imaging,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 56, pp. 1868-1879, 2009.

[6]        B. M. Asl, and A. Mahloojifar, “Eigenspace-based minimum variance beamforming applied to medical ultrasound imaging,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 57, pp. 2381-2390, 2010.

[7]        S. M. Sakhaei, and S. E. Shamsian, "Twofold minimum variance beamforming for enhanced ultrasound imaging." Journal of Medical Ultrasonics, vol. 45, pp.17-24, 2018.

[8]        Z. Wang, J. Li and R. Wu, “Time-delay- and time-reversal-based robust Capon beamformers for ultrasound imaging,” IEEE Transaction on medical imaging, vol. 24, pp.1308–1322, 2005.

[9]        C. C. Nilsen and I. Hafizovic, “Beamspace adaptive beamforming for ultrasound imaging,” IEEE Transactions on Ultrasonics. Ferroelectrics, and Frequency Control, vol. 56, pp. 2187 – 2197, 2009.

[10]    A. M. Deylami, and B. M. Asl, "A Fast and Robust Beamspace Adaptive Beamformer for Medical Ultrasound Imaging." IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 64, pp. 947-958, 2017.

[11]    M. Bae, S. B. Park, and S. J. Kwon, “Legendre polynomial based fast minimum variance beamforming method for medical ultrasound systems,” Electronics Letters, vol. 50, pp. 1570–1572, 2014.

[12]    K. Kim, S. Park, J. Kim, S.-B. Park, and M. Bae, “A fast minimum variance beamforming method using principal component analysis,” IEEE Transactions on Ultrasonics. Ferroelectrics, and Frequency Control, vol. 61, pp. 930–945, 2014.

[13]    S. M. Sakhaei, “A decimated minimum variance beamforming for ultrasound imaging,” Ultrasonics, vol. 59, pp. 119-127, 2015.

[14]    A. M. Deylami, and B. M. Asl, "Low complex subspace minimum variance beamformer for medical ultrasound imaging," Ultrasonics, vol. 66, pp. 43-53, 2016.

[15]    B. M. Asl, and A. M.  Deylami, "A Low Complexity Minimum Variance Beamformer for Ultrasound Imaging Using Dominant Mode Rejection." Ultrasonics, vol. 85, pp. 49-60, 2018.

[16]    B. M. Asl and A. Mahloojifar, “A low-complexity adaptive beamformer for ultrasound imaging using structured covariance matrix,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 59, pp. 660 – 667, 2012.

[17]    J. Park, S. M. Wi, and J. S. Lee, “Computationally efficient adaptive beamformer for ultrasound imaging based on QR decomposition,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 63, pp. 256–265, 2016.

[18]    A. C. Jensen, and A. Austeng, An approach to multibeam covariance matrices for adaptive beamforming in ultrasonography. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol 59, pp. 1139-1148, 2012.

[19]    A. C. Jensen, and A. Austeng, The iterative adaptive approach in medical ultrasound imaging. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.61, pp.1688-1697, 2014.

[20]    T. J. Shan, M. Wax, and T. Kailath, “On spatial smoothing for direction-of-arrival estimation of coherent signals,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 33, pp. 806-811, 1985.

[21]    Y. Wang, Geert Leus, and Ashish Pandharipande, "Direction estimation using compressive sampling array processing." Statistical Signal Processing, 2009. SSP'09. IEEE/SP 15th Workshop on. IEEE, 2009.

[22]    P. P. Vaidyanathan, P. Pal, Sparse sensing with co-prime samplers and arrays, Signal Processing, IEEE Transactions on Signal Processing, vol. 59, pp. 573-586, 2011.

[23]    P. Pal, and P. P. Vaidyanathan, "Nested arrays: A novel approach to array processing with enhanced degrees of freedom." IEEE Transactions on Signal Processing, vol. 58, pp. 4167-4181, 2010.

[24]    J. Yang, G. Liao, and J. Li, Robust adaptive beamforming in nested array. Signal Processing, vol.114, pp.143-149, 2015.

[25]    P. S. Naidu, Sensor array signal processing, CRC press, 2001.

[26]    S. M. Sakhaei, "Optimum beamforming for sidelobe reduction in ultrasound imaging." IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 59, pp. 799-805, 2012.

[27]    J. A. Jensen, “Field: A program for simulating ultrasound systems,” Med. Biol. Eng. Comput, vol. 34, pp. 351–353, 1996.

[28]    P. C. Li, and M.L. Li, "Adaptive imaging using the generalized coherence factor." IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 50, pp. 128-141, 2003.

[29]    M. o’donnell and s. W. Flax, “phase aberration correction using signals from point reflectors and diffuse scatterers: Measurements,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 35, no. 6, pp. 768–774, 1988.

[30]    s. Krishnan, K. W. rigby, and M. o’donnell, “Improved estimation of phase aberration profile,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 44, no. 3, pp. 701–713, 1997.