نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 استادیار، دانشکده‌ی مهندسی پزشکی، دانشگاه صنعتی سهند، تبریز، ایران

2 دانشیار، دانشکده‌ی مهندسی برق و کامپیوتر، دانشگاه تربیت مدرس، تهران، ایران

3 دانشکده‌ی مهندسی برق و الکترونیک، دانشگاه شفیلد، شفیلد، انگلستان

چکیده

تطبیق لکه‌های پروتئینی در تصاویر الکتروفورز ژل دوبعدی (2DGE)، یکی از فرایندهای اصلی در تحلیل این تصاویر است. به دلیل چالش‌های موجود در تصاویر 2DGE، هم‌چون حضور نویز و آرتیفکت‌، تطبیق لکه‌های پروتئینی، تحت نظارت نیروی انسانی انجام گرفته که این نظارت، احتمال وقوع خطاهای انسانی را به دنبال خواهد داشت. از این‌رو، در این تحقیق، یک الگوریتم جدید و خودکار برای تطبیق لکه‌های پروتئینی، مبتنی بر مدل‌های احتمالاتی، ارائه شده است. به دلیل پیچیدگی مدل احتمالاتی پیشنهادی، برای حل روابط موجود، از روش بیز-وردشی استفاده شده است. عمل‌کرد الگوریتم پیشنهادی، به‌کمک معیارهایی آماری روی مجموعه‌ی تصاویر واقعی و مصنوعی تهیه شده در این تحقیق، مورد ارزیابی قرار گرفته است. بر این اساس، لکه‌های پروتئینی توسط الگوریتم پیشنهادی، در تصاویر واقعی با خطای زاویه‌ای 05/0 رادیان و خطای نقطه‌ی پایانی 46/1 پیکسل و در تصاویر مصنوعی با خطای زاویه‌ای 13/0 رادیان و خطای نقطه‌ی پایانی 90/0 پیکسل، تطبیق داده شده‌اند. این نتایج، نشان دهنده‌ی دقت، کارایی بالاتر و خطای تطبیق پایین‌تر الگوریتم پیشنهادی در مقایسه با سایر روش‌های مورد بررسی می‌باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Protein Spot Matching in Two Dimensional Gel Electrophoresis Images based on Probabilistic Models

نویسندگان [English]

  • Sina Shamekhi 1
  • Mohammad Hosein Miranbeigi 2
  • Ali Gooya 3

1 Assistant Professor, Bioelectric Department, Biomedical Engineering Faculty, Sahand University of Technology, Tabriz, Iran

2 Associate Professor, Bioelectric Department, Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran

3 Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, S1 3JD, United Kingdom

چکیده [English]

Matching of the protein spots in two dimensional gel electrophoresis (2DGE) images is a main process of analyzing these images. Due to the challenges of 2DGE images such as the presence of noise and artifacts, the matching of protein spots is performed under human supervision. This supervision involves human errors. Therefore, in this work a new automated algorithm has been proposed for spot matching in 2DGE images which is based on a probabilistic model. Due to the complexities of the proposed model, the Variational Bayes has been used to solve the equations of the model. The performance of the proposed algorithm has been evaluated on real and synthetic 2DGE images with some statistical criteria. Protein spots in real image dataset have been matched by the proposed method with angular error of 0.05 and end point error of 1.46 and in synthetic image dataset with angular error of 0.13 and end point error of 0.90. These results reveal higher precision and effectiveness and lower matching error of the proposed method.

کلیدواژه‌ها [English]

  • Two Dimensional Gel Electrophoresis
  • Spot Segmentation
  • Matching
  • Variational Bayes
[1]     U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680-685, 1970.
[2]     P. H. O'Farrell, “High resolution two-dimensional electrophoresis of proteins,” Journal of biological chemistry, vol. 250, no. 10, pp. 4007-4021, 1975.
[3]     Automated detection and matching of spots in autoradiogram images of two-dimensional electrophoresis for high-speed genome scanning, 1997.
[4]     K. Rohr, P. Cathier, and S. Wörz, “Elastic registration of electrophoresis images using intensity information and point landmarks,” Pattern recognition, vol. 37, no. 5, pp. 1035-1048, 2004.
[5]     G. Shi, T. Jiang, W. Zhu, B. Liu, and H. Zhao, “Alignment of two-dimensional electrophoresis gels,” Biochemical andbiophysical research communications,vol. 357, no. 2, pp. 427-432, 2007.
[6]     M. Rogers and J. Graham, “Robust and accurate registration of 2-D electrophoresis gels using point-matching,” IEEE transactions on image processing, vol. 16, no. 3, pp. 624-635, 2007.
[7]     D. Sun, S. Roth, J. P. Lewis, and M. J. Black, “Learning Optical Flow,” in Computer Vision – ECCV 2008: 10th European Conference on Computer Vision, Marseille, France, October 12-18, 2008, Proceedings, Part III, D. Forsyth, P. Torr, and A. Zisserman, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 83-97.
[8]     D. Sun, S. Roth, and M. J. Black, “Secrets of optical flow estimation and their principles,” in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, 2010, pp. 2432-2439: IEEE.
[9]     D. Sun, S. Roth, and M. J. Black, “A quantitative analysis of current practices in optical flow estimation and the principles behind them,” International Journal of Computer Vision, vol. 106, no. 2, pp. 115-137, 2014.
[10] A. Rodriguez, C. Fernandez-Lozano, J. Dorado, and J. R. Rabunal, “Two-dimensional gel electrophoresis image registration using block-matching techniques and deformation models,” Analytical biochemistry,vol. 454, pp. 53-59, 2014.
[11] H.-M. Xin and Y. Zhu, "Spot Matching of 2-DE Images Using Distance, Intensity, and Pattern Information," in 2-D PAGE Map Analysis: Springer, pp. 109-117, 2016.
[12] B. Alizadeh Savareh, A. Bashiri, and M. Mostafavi, "Neighborhood matrix: A new idea in matching of two dimensional gel images," Progress in Biological Sciences, vol. 6, no. 2, pp. 129-137, 2017.
[13] J. Ashburner and K. J. Friston, “Unified segmentation,” Neuroimage, vol. 26, no. 3, pp. 839-851, 2005.
[14] C. M. Bishop, “Pattern recognition and machine learning,” Springer New York, 2006.
[15] A. Gooya, K. M. Pohl, M. Bilello, L. Cirillo, G. Biros, E. R. Melhem and C. Davatzikos, “GLISTR: glioma image segmentation and registration,” IEEE transactions on medical imaging,vol. 31, no. 10, pp. 1941-1954, 2012.
[16] M. J. Beal, “Variational algorithms for approximate Bayesian inference,” University of London United Kingdom, 2003.
[17] T. Jaakkola, “10 Tutorial on Variational Approximation Methods,” Advanced mean field methods: theory and practice, p. 129, 2001.
[18] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, “An introduction to variational methods for graphical models,” Machine learning,vol. 37, no. 2, pp. 183-233, 1999.
[19] A. Corduneanu and C. M. Bishop, “Variational Bayesian model selection for mixture distributions,” in Artificial intelligence and Statistics, vol. 2001, pp. 27-34: Morgan Kaufmann Waltham, MA.
[20] F. L. Bookstein, “Principal warps: Thin-plate splines and the decomposition of deformations,” IEEE Transactions on pattern analysis and machine intelligence, vol. 11, no. 6, pp. 567-585, 1989.
[21] H. Chui and A. Rangarajan, “A new point matching algorithm for non-rigid registration,” Computer Vision and Image Understanding,vol. 89, no. 2, pp. 114-141, 2003.
[22]           س. شامخی، م. ح. میران بیگی، ب. آذریان، و ع. گویا، «مدل شکلی ناهمسانگرد جدید برای لکه های پروتیینی در تصاویر الکتروفورز ژل دو بعدی،» مجوعه مقالات بیست و دومین کنفرانس مهندسی زیست پزشکی ایران، .1394
[23] C. Sun and X.-m. Wang, “Spot segmentation and verification based on improve marker controlled watershed transform,” in Computer Science and Information Technology(ICCSIT), 2010 3rd IEEE International Conference on, 2010, vol. 8, pp. 63-66.
[24] Deqing Sun research page, School of Engineering and Applied Sciences, Harvard University. Available: http://people.seas.harvard.edu/~dqsun/
[25] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High accuracy optical flow estimation based on a theory for warping,” Computer Vision-ECCV 2004, pp. 25-36, 2004.
[26] Binaries/Code, Department of Computer Science, Faculty of Engineering, Lehrstuhl für Mustererkennung und Bildverarbeitung. Available: http://lmb.informatik.uni-freiburg.de/resources/binaries
[27] A. Myronenko and X. Song, “Point set registration: Coherent point drift,” IEEE transactions on pattern analysis and machine intelligence,vol. 32, no. 12, pp. 2262-2275, 2010.
[28] S. Sudhakara, N. Patel, and V. Gadre, "Non-subsampled contourlet transform & coherent point drift based registration of 2D gel electrophoresis images," in Convergence in Technology (I2CT), 2017 2nd International Conference for, 2017, pp. 410-415: IEEE.