نویسندگان

1 دانشجوی کارشناسی ارشد، آزمایشگاه بینایی ماشینی و پردازش تصاویر پزشکی، گروه مهندسی پزشکی، دانشکده‌ی مهندسی برق، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

2 دانشجوی دکترا، دانشکده‌ی محاسبات، دانشگاه کوئینز، کینگستون، کانادا

3 استادیار، گروه علوم اعصاب، دانشکده‌ی فناوریهای نوین پزشکی، دانشگاه علوم پزشکی تهران، تهران، ایران

4 استادیار، آزمایشگاه ثبت داده‌های زیست‌پزشکی، گروه مهندسی پزشکی، دانشکده‌ی مهندسی برق، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

5 استاد، آزمایشگاه بینایی ماشینی و پردازش تصاویر پزشکی، گروه مهندسی پزشکی، دانشکده‌ی مهندسی برق، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

10.22041/ijbme.2019.91397.1391

چکیده

در فرایند بینایی، اطلاعات تولید شده توسط گیرندههای نوری استوانهای و مخروطی، پس از فشرده شدن در شبکیه، از طریق سه مسیر جداگانهی سلولهای عقدهای، به نامهای مگنو، پاروو و کونیو، به مراکز پردازشی سطح بالاتر ارسال میشوند. شواهد مبتنی بر الکتروفیزیولوژی و سایکوفیزیک، حاکی از آن است که این مسیرهای سهگانه، الگوهای خاصی از تخریب عملکردی را در بیماری اسکلروز چندگانه (MS) نشان میدهند. اگرچه مکان‌یابی دقیق فعالیت عصبی در این مسیرها، با استفاده از fMRI امکان‌پذیر است، تا کنون هیچ مطالعه‍‌ای با استفاده از fMRI روی تخریب عملکرد این مسیرها در بیماران MS انجام نشده است. در این پژوهش، به بررسی اختلالات ایجاد شده در عمل‌کرد این مسیرها در بیماران MS پرداخته شده است. بدین منظور، سه محرک بینایی متفاوت، با فرکانسهای مکانی و زمانی خاص، برای تحریک اختصاصی این سه مسیر، تولید شده است. این محرکها، به هوسیلهی پروژکتوری کالیبره شده، که در خارج از اتاق اسکنر MRI قرار داشت، به فرد داخل اسکنر نشان داده میشد. با استفاده از یک پروتکل استاندارد، از دو گروه سالم و مبتلا به MS (هر گروه شامل 5 نفر) تصویربرداری fMRI انجام شد. در نهایت، پاسخهای به دست آمده در قشر بینایی و ناحیهی هستهی زانویی جانبی (LGN)، به طور درونگروهی و برونگروهی، مورد تحلیل قرار گرفت. آنالیز­های گروهی داده­های fMRI، با استفاده از مدل خطی عمومی (GLM) و روش تاثیر ثابت، در نرم‌افزار FSL انجام شد، که نتایج به دست آمده، نشان دهنده‌ی الگوهایی از تخریب عمل‌کردی در قشر بینایی و LGN در گروه MS بود. هم‌چنین، از میان سه مسیر بینایی مگنو، پاروو و کونیو در LGN، تنها در مسیر سلولی مگنو، تخریب معنیدار عملکردی در بیماران MS مشاهده شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Assessment of Functional Disorders of Magno, Parvo and Konio-Cellular Pathways in MS Patients using fMRI

نویسندگان [English]

  • Neda Sardaripour 1
  • Alireza Sedghi 2
  • Ali Yoonessi 3
  • Ali Khadem 4
  • Hamid Abrishami Moghaddam 5

1 M.Sc. Student, Machine Vision and Medical Image Processing Lab (MVMIP), Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran

2 Ph.D. Candidate, School of Computing, Queen's University, Kingston, Canada

3 Assistant Professor, Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran

4 Assistant Professor, Biomedical Data Acquisition Lab (BDA), Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran

5 Professor, Machine Vision and Medical Image Processing Lab (MVMIP), Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran

چکیده [English]

During vision process, the information produced by rod and cone photoreceptors is compressed in retina and then is transmitted by three separated pathways of ganglion cells, Magno, Parvo and Konio, to the upper level processing centers. There are electrophysiological and psychophysical evidences that these three pathways show characteristic patterns of malfunction in multiple sclerosis (MS) patients. Although fMRI can provide accurate localization of the neural activities in these pathways, there is no fMRI study on malfunctions of these pathwyas in MS yet. So by employing the differences in structure and function of these cells, we generated three different visual stimuli with different spatial and temporal frequencies to stimulate each pathway separately. These stimuli were shown to the subject inside MRI scanner by a calibrated projector located outside of scanner room. The fMRI data were acquired from two groups of normal and MS subjects (each including 5 subjects) by using a standard protocol. Finally, the activation results in visual lobe and LGN were analyzed in within-group and between-group levels. The group analysis of fMRI data was performed by using general linear modeling (GLM) and fixed-effect method via FSL software and results showed patterns of malfunctions in visual cortex and LGN in MS group. Also, among Magno, Parvo, and Konio cellular pathways in LGN, just the activation of Magno cellular pathway showed significant malfunction in MS group.

کلیدواژه‌ها [English]

  • Multiple Sclerosis (MS)
  • Visual pathways
  • Magno
  • Parvo
  • Konio
  • Lateral Geniculate Nucleous (LGN)
  • functional Magnetic Resonance Imaging (fMRI)

[1]     M. Tintore, A. Rovira, M. J. Martinez, J. Rio, P. Diaz-Villoslada, L. Brieva, C. Borras, E. Grive, J. Capellades, and X. Montalban, "Isolated demylination syndromes: comparison of different MR imaging criteria to predict conversion to clinically define multiple sclerosis," American Journal of Neuro-Radiology. vol. 21, no. 4, pp. 702-706, 2000.

[2]     A. Ascherio and K. L. Munger, "Environmental risk factors for multiple sclerosis. Part I: The role of infection," Annals of Neurology, vol. 61, no. 4, pp. 288-299, 2007.

[3]     A. Ascherio and K. L. Munger, "Environmental risk factors for multiple sclerosis. Part II: Noninfectious factors," Annals of Neurology, vol. 61, no. 6, pp. 504-513, 2007.

[4]   ناصر پارسا و زهره سادات حسینی، "تازه‍های علمی در مورد بیماری ام-اس، " نشریه نشاء علم، سال دوم، شماره دوم، خرداد ماه  1391.

[5]     F. Lublin and S. Reingold, "Defining the clinical course of multiple sclerosis: results of an international survey," Neurology, vol. 46, no. 4, pp. 907-911, 1996.

[6]     R. Rudick, G. Cutter, and S. Reingold, "The multiple sclerosis functional composite: a new clinical outcome measure for multiple sclerosis trials," Multiple Sclerosis, vol. 8, no. 5, pp. 359-365, 2002.

[7]     A. P. Turner, K. N. Alschuler, A. J. Hughes, M. Beier, J. K. Haselkorn, A. P. Sloan, and D. M. Ehde, "Mental health comorbidity in MS: depression, anxiety, and bipolar disorder," Current Neurology and Neuroscience Reports, vol. 16, no. 12, pp. 106, 2016.

[8]     M. Kargarfard, M. Eetemadifar, M. Mehrabi, A. H. Maghzi, and M. R. Hayatbakhsh, "Fatigue, depression, and health-related quality of life in patients with multiple sclerosis in Isfahan, Iran," European Journal of Neurology, vol. 19, no. 3, pp. 431-437, 2011.

[9]     P. A. Arnett, C. I. Higginson, W. D. Voss, B. Wright, W. Bender, J. M. Wurst, and J. M. Tippin, "Depressed mood in multiple sclerosis: relationship to capacity-demanding memory and attentional functioning," Neuropsychology, vol. 13, no. 3, pp. 434-446, 1999.

[10] S. W. Kinsinger, E. Lattie and D. C. Mohr, "Relationship between depression, fatigue, subjective cognitive impairment, and objective neuropsychological functioning in patients with multiple sclerosis," Neuropsychology, vol. 24, no. 5, pp. 573-580, 2010.

[11] A. Compston and A. Coles, "Multiple sclerosis," The Lancet, vol. 372, no. 9648, pp. 1502-1517, 2008.

[12] M. Kolappan, A. P. Henderson, T. M. Jenkins, C. A. Wheeler-Kingshott, G. T. Plant, A. J. Thompson, and D. H. Miller, "Assessing structure and function of the afferent visual pathway in multiple sclerosis and associated optic neuritis," Journal of Neurology, vol. 256, no. 3, pp. 305-319, 2009.

[13] Ali Yoonessi and Ahmad Yoonessi, "Functional assessment of magno, parvo and konio-cellular pathways; current state and future clinical applications," Journal of Ophthalmic & Vision Research, vol. 6, no.2, pp.119-126, 2011.

[14] P. Manogaran, J. V. Hanson, E. D. Olbert, C. Egger, C. Wicki, C. Gerth-Kahlert, K. Landau, and S. Schippling, "Optical coherence tomography and magnetic resonance imaging in multiple sclerosis and neuromyelitis optica spectrum disorder." International Journal of Molecular Sciences, vol. 17, no.11, 2016.

[15] L. S. Talman, E. R. Bisker, D. J. Sackel, D. A. J. Long, K. M. Galetta, J. N. Ratchford, D. J. Lile, et al. "Longitudinal study of vision and retinal nerve fiber layer thickness in multiple sclerosis," Annals of Neurology, vol. 67, no. 6, pp. 749-760, 2010.

[16] D. C. Tian, L. Su, M. Fan, J. Yang, R. Zhang, P. Wen, Y. Han, C. Yu, C. Zhang, H. Ren, K. Shi, Z. Zhu, Y. Dong, Y. Liu, and F. D. Shi, "Bidirectional degeneration in the visual pathway in neuromyelitis optica spectrum disorder (NMOSD)," Multiple Sclerosis, 2017.

[17] M. Movassat, N. Piri, and M. Nili-AhmadAbadi, "Visual evoked potential study in multiple sclrosis disease," Iranian Journal of Ophthalmology, vol. 21, no. 4, pp. 37-44, 2009.

[18] W. H. Merigan and T. A. Eskin, "Spatio-temporal vision of macaques with severe loss of Pβ retinal ganglion cells", Vision Research, vol. 26, no. 11, pp. 1751-1761, 1986.

[19] W. H. Merigan, "Chromatic and achromatic vision of macaques: role of the P pathway," The Journal of Neuroscience, vol. 9, no. 3, pp. 776-783, 1989.

[20] A. M. Derrington and P. Lennie, "Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque," The Journal of Physiology, vol. 357, pp. 219-240, 1984.

[21] A. J. R. White, S. G. Solomon, and P. R. Martin, "Spatial properties of koniocellular cells in the lateral geniculate nucleus of the marmoset Callithrix jacchus," The Journal of Physiology, vol. 533, no. 2, pp. 519-535, 2001.

[22] B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, "Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers," Journal of the Optical Society of America A, vol. 7, no. 12, pp. 2223-2236, 1990.

[23] P. R. Martin, A. J. White, A. K. Goodchild, H. D. Wilder, and A. E. Sefton, "Evidence that blue‐on cells are part of the third geniculocortical pathway in primates," European Journal of Neuroscience, vol. 9, no .7, pp. 1536-1541, 1997.

[24] D. M. Dacey and O. S. Packer, "Colour coding in the primate retina: diverse cell types and cone-specific circuitry," Current opinion in neurobiology, vol. 13, no. 4, pp. 421-427, 2003.

[25] S. Chatterjee and E. M. Callaway, "Parallel colour-opponent pathways to primary visual cortex," Nature, vol. 426, no. 6967, pp.  668-671, 2003.

[26] A. Kleinschmidt, B. B. Lee, M. Requardt, J. Frahm, "Functional mapping of color processing by magnetic resonance imaging of responses to selective P- and M-pathway stimulation," Experimental Brain Research, vol. 110, no. 2, pp. 279-288, 1996.

[27] R. N. Denison, A. T. Vu, E. Yacoub, D. A. Feinberg, and M. A. Silver, "Functional mapping of the magnocellular and parvocellular subdivisions of human LGN," NeuroImage, vol. 102, no. 2, pp. 358-369, 2014.

[28]           آرتور سی گایتون و جان ای هال، "فیزیولوژی پزشکی،" ویرایش سیزدهم، ترجمه دکتر احمدرضا نیاورانی، 1394 ، انتشارات سماط.

[29] Site of encyclopedia of Psychology, Available: https://psychlopedia.wikispaces.com/Occipital+Lobes

[30] R. W. Guillery and S. M. Sherman, "Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system," Neuron, vol. 33, no. 2, pp. 163-75, 2002.

[31] J. Cudeiro and A. M. Sillito, "Looking back: corticothalamic feedback and early visual processing," Trends in Neurosciences, vol. 29, no. 6, pp. 298–306, 2006.

[32] G. G. Blasdel and D. Fitzpatrick, "Physiological organization of layer 4 in macaque striate cortex," Journal of Neuroscience, vol. 4, no. 3, pp. 880–895, 1984.  

[33] J. W. Peirce, "PsychoPy—psychophysics software in Python," Journal of Neuroscience Methods, vol. 162, no. (1-2), pp. 8-13, 2007.

[34] J. Gonzalez-Castillo, V. Roopchansingh, P. A. Bandettini, and J. Bodurka, "Physiological noise effects on the flip angle selection in BOLD fMRI," Neuroimage, vol. 54, no. 4, pp. 2764-2778, 2011.

[35] R. E. J. Kelly, G. S. Alexopoulos, Z. Wang, F. M. Gunning, C. F. Murphy, S. S. Morimoto, D. Kanellopoulos, Z. Jia, K. O. Lim, and M. J. Hoptman, "Visual inspection of independent components: defining a procedure for artifact removal from fMRI data," Journal of Neuroscience Methods, vol. 189, no. 2, pp. 233-245, 2010.

[36] C. F. Beckmann, M. Jenkinson, and S. M. Smith, "General multilevel linear modeling for group analysis in fMRI," Neuroimage, vol. 20, no. 2, pp. 1052-1063, 2003.

[37] A. Green, S. McQuaid, S. Hauser, I. Allen and R. Lyness, "Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration", Brain, vol. 133, no. 6, pp. 1591-1601, 2010.

[38] N. Evangelou, "Size-selective neuronal changes in the anterior optic pathways suggest a differential susceptibility to injury in multiple sclerosis", Brain, vol. 124, no. 9, pp. 1813-1820, 2001.

[39] G. Plant and R. Hess, "regional threshold contrast sensitivity within the central visual field in optic neuritis", Brain, vol. 110, no. 2, pp. 489-515, 1987.

[40] G. Plant, "Transient visually evoked potentials to sinusoidal gratings in optic neuritis.", Journal of Neurology, Neurosurgery & Psychiatry, vol. 46, no. 12, pp. 1125-1133, 1983..

[41] K. Mullen and G. Plant, "Colour and luminance vision in human optic neuritis", Brain, vol. 109, no. 1, pp. 1-13, 1986.

[42] S. Murav’eva, A. Deshkovich and Y. Shelepin, "The human magno and parvo systems and selective impairments of their functions", Neuroscience and Behavioral Physiology, vol. 39, no. 6, pp. 535-543, 2009.

[43] R. Guillery, A. Okoro, and C. J. Witkop, “Abnormal visual pathways in the brain of a human albino,” Brain Research, vol. 96, no. 2, pp. 373–377, 1975.