نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی پزشکی، گروه بیوالکتریک، دانشکده‌ی مهندسی پزشکی، دانشگاه صنعتی امیرکبیر، تهران، ایران

2 استادیار، گروه بیوالکتریک، دانشکده‌ی مهندسی پزشکی، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

مغز به عنوان پیچیده‌ترین عضو بدن انسان، از جنبه‌های مختلفی مورد مطالعه قرار می‌گیرد. بیش‌ترین منشا این پیچیدگی از آن‌جا ناشی می‌شود که با وجود ثبات معماری ساختاری (اتصالات فیزیکی)، اتصالات کارکردی دینامیک و مختلفی در مغز وجود دارد. در بیماری‌های مغزی، معمولا هر دو اتصال ساختاری و کارکردی مغز و هم‌چنین ارتباط میان آن‌ها دچار تغییر شده و علایم رفتاری متفاوتی را ناشی می‌شود. مطالعه‌ی تغییرات اتصالات مغزی در این‌گونه بیماری‌ها، به شناخت بهتر ارتباط میان ساختار و کارکرد مغز کمک می‌کند. یکی از اختلالات روانی رایج، بیماری اسکیزوفرنی است که از سایر بیماری‌های روان‌شناختی، وخیم‌تر بوده و هر دو بخش ساختار و کارکرد مغز را به طور گسترده‌ای درگیر می‌کند. در میان روش‌هایی که تا کنون برای بررسی ارتباط میان داده‌های مغز پیشنهاد شده، رویکرد آنالیز توام، به دلیل توانایی استخراج اطلاعات متناظر در چند مدالیته، مورد توجه بسیاری از پژوهش‌گران قرار گرفته است. با وجود یافته‌های ارزشمند این روش‌ها، از آن‌جا که آنالیز آن‌ها تا کنون محدود به واکسل‌های تصویر بوده، اطلاعاتی از ارتباط میان اتصالات مغزی با استفاده از این روش‌ها فراهم نشده است. در این پژوهش از الگوریتم پیوندی آنالیز مولفه‌های مستقل به منظور تحلیل ارتباط میان تغییرات اتصالات کارکردی و ساختاری مغز بیماران اسکیزوفرنی در مقایسه با افراد سالم استفاده شده است. نتایج این مطالعه تایید می‌کند که ارتباط میان اتصالات مغزی الزاما به صورت یک-به-یک نمی‌باشد. هم‌چنین یافته‌های این پژوهش نشان داده که تغییرات اتصالات ساختاری مانند فاسیکولوس طولی فوقانی و فاسیکولوس طولی تحتانی با تغییرات کارکردی در نواحی مختلف مغزی مانند لوب‌های گیج‌گاهی و پیشانی مرتبط است. با مقایسه‌ی قدرت گره و طول کوتاه‌ترین مسیر در زیرشبکه‌های به دست آمده، کاهش بازدهی در انتقال موازی اطلاعات کارکردی در بیماران اسکیزوفرنی مشاهده گردید. با توجه به این یافته‌ها می‌توان نتیجه گرفت که آنالیز توام در سطح اتصالات مغزی می‌تواند به درک بهتر ارتباط میان تغییرات به وجود آمده در اتصالات ساختاری و کارکردی مغز کمک کند. 

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Fusion Analysis of Brain Functional and Structural Connectivity to Discriminate Schizophrenia in Network Level

نویسندگان [English]

  • Farzaneh Keyvanfard 1
  • Abbas Nasiraei Moghaddam 2

1 Ph.D. Student, Bioelectric Department, Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran

2 Assistant Professor, Bioelectric Department, Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran

چکیده [English]

Brain as the most complex organ in the human body has been investigated from various aspects. The greatest origin of this complexity is due to the fact that, despite the fixed architecture of brain structure (physical connections), the functional connectivity is in a constantly changing state, resulting to different behaviors. In many mental diseases, both brain structural and functional connectivities and their relationship are changed and cause different symptoms. Investigation of brain connectivity variations in the disease may help to better understanding of the relationship between brain structure and function. One of the most severe and debilitating brain disorders is Schizophrenia in which both brain structure and function are involved. Among all available methods, multimodal analysis of data has been recently gained great interest to provide the capability of extracting association between separate neuroimaging data. However, due to their voxel based viewpoint, relationship between brain connectivities cannot be inferred. In this study, the joint independent component analysis (jICA) has been proposed to investigate the relationship between brain functional and structural connectivity. We applied the suggested approach to combine functional and structural connectivity, in order to assess abnormalities underlying schizophrenic patients relative to healthy people. The findings suggest that the correspondence between brain function and structure is not necessarily one-to-one. The results also indicated that variations in several structural fibers, such as superior longitudinal fasciculus and inferior longitudinal fasciculus, are associated with functional changes in the temporal and frontal lobes. Besides, analyzing the nodal strength and shortest path length in the obtained subnetworks demonstrates that the functional subnetworks efficiency in parallel information transfer in schizophrenic patients is reduced. Overall, the outcomes point out the capability of the proposed method to better understanding of brain functional and structural connectivity association and its variations in brain disorders. 

کلیدواژه‌ها [English]

  • Magnetic Resonance Imaging
  • Fusion Analysis
  • Functional and Structural Connectivity
  • Schizophrenia
  • Network Perspective
[1]   K. J. Friston and C. D. Frith, “Schizophrenia: a disconnection syndrome,” Clin Neurosci, vol. 3, no. 2, pp. 89–97, 1995.
[2]   K. L. Hamilton, L. S., Altshuler, L. L., Townsend, J., Bookheimer, S. Y., Phillips, O. R., Fischer, J., Woods, R. P., Mazziotta, J. C., Toga, A. W., Nuechterlein, K. H., and Narr, “Alterations in Functional Activation in Euthymic Bipolar Disorder and Schizophrenia During a Working Memory Task,” Brain, vol. 30, no. 12, pp. 3958–3969, 2009.
[3]   A. Fornito, A. Zalesky, C. Pantelis, and E. T. Bullmore, “Schizophrenia, neuroimaging and connectomics,” Neuroimage, vol. 62, no. 4, pp. 2296–2314, 2012.
[4]   R. E. Gur and R. C. Gur, “The application of functional magnetic resonance imaging in neuroscience research Functional magnetic resonance imaging in schizophrenia,” pp. 333–343, 2010.
[5]   M. Kubicki, C.-F. Westin, R. W. McCarley, and M. E. Shenton, “The Application of DTI to Investigate White Matter Abnormalities in Schizophrenia,” NIH Public Access, vol. 54, no. 5, pp. 134–148, 2005.
[6]   Jessika E Sussmann et al., “White matter abnormalities in bipolar disorder and schizophrenia detected using diffusion tensor magnetic resonance imaging,” Bipolar Disord., vol. 68, no. 6, pp. 560–7, Sep. 2009.
[7]   J. Sui, Q. Yu, H. He, G. D. Pearlson, and V. D. Calhoun, “A Selective Review of Multimodal Fusion Methods in Schizophrenia,” Front. Hum. Neurosci., vol. 6, no. February, pp. 1–11, 2012.
[8]   M. D. Greicius, K. Supekar, V. Menon, and R. F. Dougherty, “Resting-state functional connectivity reflects structural connectivity in the default mode network,” Cereb. Cortex, vol. 19, no. 1, pp. 72–78, 2009.
[9]   P. Skudlarski, K. Jagannathan, V. D. Calhoun, M. Hampson, B. a. Skudlarska, and G. Pearlson, “Measuring brain connectivity: Diffusion tensor imaging validates resting state temporal correlations,” Neuroimage, vol. 43, no. 3, pp. 554–561, 2008.
[10]C. J. Honey, J. P. Thivierge, and O. Sporns, “Can structure predict function in the human brain?,” NeuroImage, vol. 52, no. 3. Elsevier Inc., pp. 766–776, 2010.
[11]P. Hagmann et al., “Mapping the structural core of human cerebral cortex,” PLoS Biol., vol. 6, no. 7, pp. 1479–1493, 2008.
[12]J. M. and V. A. Bousquet J, Jeffery PK, Buse WW, V. AM., S. Of, and T. H. E. Art, “Data-driven approaches for identifying links between brain structure and function in health and disease,” Dialogues Clin. Neurosci., vol. 36, pp. 20–23, 2017.
[13]J. Sui, R. Huster, Q. Yu, J. M. Segall, and V. D. Calhoun, “Function-structure associations of the brain: Evidence from multimodal connectivity and covariance studies,” Neuroimage, vol. 102, pp. 11–23, 2013.
[14]V. D. Calhoun and J. Sui, “Multimodal Fusion of Brain Imaging Data : A Key to Finding the Missing Link(s) in Complex Mental Illness,” Biol. Psychiatry Cogn. Neurosci. Neuroimaging, no. 8, pp. 1–8, 2016.
[15]V. D. Calhoun, T. Adali, K. a. Kiehl, R. Astur, J. J. Pekar, and G. D. Pearlson, “A method for multitask fMRI data fusion applied to schizophrenia,” Hum. Brain Mapp., vol. 27, no. 7, pp. 598–610, 2006.
[16]V. D. Calhoun, T. Adali, N. R. Giuliani, J. J. Pekar, K. a. Kiehl, and G. D. Pearlson, “Method for multimodal analysis of independent source differences in schizophrenia: Combining gray matter structural and auditory oddball functional data,” Hum. Brain Mapp., vol. 27, no. 1, pp. 47–62, 2006.
[17]J. Sui et al., “Discriminating schizophrenia and bipolar disorder by fusing fMRI and DTI in a multimodal CCA+ joint ICA model,” Neuroimage, vol. 57, no. 3, pp. 839–855, 2011.
[18]B. Mišić et al., “Network-Level Structure-Function Relationships in Human Neocortex,” Cereb. Cortex, no. April, p. bhw089, 2016.
[19]A. Ponce-Alvarez, G. Deco, P. Hagmann, G. L. Romani, D. Mantini, and M. Corbetta, “Resting-State Temporal Synchronization Networks Emerge from Connectivity Topology and Heterogeneity,” PLoS Comput. Biol., vol. 11, no. 2, pp. 1–23, 2015.
[20]A. Haimovici, E. Tagliazucchi, P. Balenzuela, and D. R. Chialvo, “Brain organization into resting state networks emerges at criticality on a model of the human connectome,” Phys. Rev. Lett., vol. 110, no. 17, pp. 1–4, 2013.
[21]L. Cammoun et al., “Mapping the human connectome at multiple scales with diffusion spectrum MRI,” J. Neurosci. Methods, vol. 203, no. 2, pp. 386–397, 2012.
[22]D. K. Jones, “Studying connections in the living human brain with diffusion MRI,” cortex, vol. 44, no. 8, pp. 936–952, 2008.
[23]M. Jenkinson, C. F. Beckmann, T. E. J. Behrens, M. W. Woolrich, and S. M. Smith, “Fsl,” Neuroimage, vol. 62, no. 2, pp. 782–790, 2012.
[24]M. Jenkinson, P. Bannister, M. Brady, and S. Smith, “Improved optimization for the robust and accurate linear registration and motion correction of brain images,” Neuroimage, vol. 17, no. 2, pp. 825–841, 2002.
[25]A. J. Bell and T. J. Sejnowski, “An Information-Maximization Approach to Blind Separation and Blind Deconvolution,” Neural Comput., vol. 7, no. 6, pp. 1129–1159, 1995.
[26]Z. Yang, S. LaConte, X. Weng, and X. Hu, “Ranking and averaging independent component analysis by reproducibility (RAICAR).,” Hum. Brain Mapp., vol. 29, no. 6, pp. 711–25, 2008.
[27]J. Sui et al., “Combination of Resting State fMRI, DTI, and sMRI Data to Discriminate Schizophrenia by N-way MCCA + jICA.,” Front. Hum. Neurosci., vol. 7, no. May, p. 235, 2013.
[28]J. Sui et al., “Three-way (N-way) fusion of brain imaging data based on mCCA+jICA and its application to discriminating schizophrenia,” Neuroimage, vol. 66, pp. 119–132, 2013.
[29]R. G. M. Schlösser et al., “White matter abnormalities and brain activation in schizophrenia: a combined DTI and fMRI study.,” Schizophr. Res., vol. 89, no. 1–3, pp. 1–11, Jan. 2007.
[30]E. Amico and J. Goñi, “Mapping hybrid functional-structural connectivity traits in the human connectome,” Neurons Cogn., 2017.
[31]M. Lynall et al., “Functional Connectivity and Brain Networks in Schizophrenia,” vol. 30, no. 28, pp. 9477–9487, 2010.
[32]Y. Liu et al., “Disrupted small-world networks in schizophrenia,” Brain, vol. 131, no. 4, pp. 945–961, 2008.
[33]S. Micheloyannis, “Graph-based network analysis in schizophrenia,” World J. Psychiatry, vol. 2, no. 1, 2012.
[34]Q. Yu et al., “Altered topological properties of functional network connectivity in schizophrenia during resting state: A small-world brain Network study,” PLoS One, vol. 6, no. 9, 2011.
[35]G. Collin, R. S. Kahn, M. A. De Reus, W. Cahn, and M. P. Van Den Heuvel, “Impaired rich club connectivity in unaffected siblings of schizophrenia patients,” Schizophr. Bull., vol. 40, no. 2, pp. 438–448, 2014.
[36]M. P. Van Den Heuvel et al., “Abnormal rich club organization and functional brain dynamics in schizophrenia,” JAMA Psychiatry, vol. 70, no. 8, pp. 783–792, 2013.
[37]M. P. van den Heuvel, R. C. W. Mandl, C. J. Stam, R. S. Kahn, and H. E. Hulshoff Pol, “Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis.,” J. Neurosci., vol. 30, no. 47, pp. 15915–15926, 2010.