نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 استادیار، گروه مهندسی پزشکی، دانشکده‌ی مهندسی برق، پزشکی و مکاترونیک، واحد قزوین، دانشگاه آزاد اسلامی ، قزوین، ایران

2 کارشناسی ارشد، گروه مهندسی پزشکی، دانشکده‌ی مهندسی برق، پزشکی و مکاترونیک، واحد قزوین، دانشگاه آزاد اسلامی ، قزوین، ایران

چکیده

در این پژوهش، یک طرح بازاریابی عصبی توسط پردازش سیگنال‌های EEG انجام شده و در آن میزان علاقه‌مندی افراد جامعه به خرید یک کالای تزئینی نسبتا لوکس مورد ارزیابی قرار گرفته است. سیگنال‌های مغزی 24 شرکت کننده در هنگام تماشای تصاویر سنگ‌های زینتی (که بر اساس معیارها و شاخص‌های ارزیابی متداول در امور اقتصادی، دارای مزیت نسبی در صادرات است) ثبت و پردازش شده تا اطلاعات معناداری از فعالیت مغزی که درگیر فرایند احساسی/دوست‌داشتن و تصمیم‌گیری/انتخاب است به دست آید. سیگنال‌های ثبت شده در فاز تحریک و انتخاب، برای حذف نویزها و آرتیفکت‌ها در چند مرحله پیش‌پردازش شده‌اند. سپس برای به دست آوردن نواحی فعال مغز هنگام تماشای سنگ‌های ارزشمند، داده‌های 19-کاناله‌ی EEG توسط ابزارهای چندگانه پردازش شده است. نگاشت مغزی و آنالیز منطقه‌ای نشان می‌دهد که فعالیت نواحی اکسیپیتال>فرونتال>لیمبیک بیش از سایر نواحی مغز بوده و هم‌چنین نیم‌کره‌ی چپ بیش از نیم‌کره‌ی راست فعالیت داشته است. در فاز بعدی، ویژگی غیرخطی آنتروپی تقریبی از سیگنال‌ها استخراج شده و از آن برای آموزش شبکه‌ی عصبی-فازی استفاده شده است. شبکه‌ی نوروفازی به عنوان طبقه‌بند اتوماتیک جهت آموزش و پیش‌بینی انتخاب افراد به کار گرفته شده است. نتایج حاصل از این پردازش دارای صحت 25/86% و دقت 4/87% در کلاس‌بندی سه‌گروهه (دو گروه خوشایند و یک گروه ناخوشایند بر حسب انتخاب‌های کابران) می‌باشد. در فاز نهایی، با استفاده از اطلاعات به دست آمده از پرسش‌نامه‌ای که توسط شرکت کنندگان تکمیل شده، بعد از جلسه‌ی ثبت، آنالیز آماری ناخودآگاه و خودآگاه توسط آزمون t، آنالیز واریانس و رگرسیون انجام شده است. نتایج آزمون آماری حاکی از وجود تفاوت معناداری بین شناخت خوشانیدی و ناخوشایندی در انتخاب بین گروه خانم‌ها و آقایان و در انتخاب انواع سنگ‌ها می‌باشد. هم‌چنین با استفاده ازنتایج آزمون آماری، فرضیه‌ی عدم وجود تفاوت معنادار میان انتخاب‌های خودآگاه و ناخودآگاه، مردود شد. 

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Nonlinear EEG Processing and Statistical Analysis in the Study of Preference and Liking a Product

نویسندگان [English]

  • Somayeh Raiesdana 1
  • Samaneh Safari 2

1 Assistant Professor, Biomedical Engineering Group, Department of Electrical, Biomedical and Mechatronics Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

2 M.Sc. Biomedical Engineering Group, Department of Electrical, Biomedical and Mechatronics Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

چکیده [English]

In this study, a neuromarketing project was conducted via EEG signal processing in which the individuals’ interest for buying a relatively luxurious decorative product (which has a relative advantage in exports based on commonly evaluated criteria and indicators in economic) was evaluated. EEG signals of 24 participants during observing and selecting gemstone images were recorded and processed in order to analyze statistical significance of brain activity variations involved in the emotional (liking) and the decision making (choosing) processes. The recorded signals during the stimulation and selection phases were pre-processed in several steps to remove the existing noises and artifacts. Then, the 19-channel EEGs were processed via multiple tools to indicate active brain regions while watching gemstones. Brain mapping and regional analysis indicated that the occipital>frontal>limbic regions were more activated than other regions. Moreover, the left hemisphere has been more active than the right hemisphere. At the next step, nonlinear entropy feature of each signal segment was extracted to be used for training a neurofuzzy system which is an automatic classifier that learns to classify the individuals’ choices. The classification has resulted in 86.25% precision and 87.4% accuracy in a three-class classification task (including two pleasant selections and one unpleasant selection). At the final step, using a questionnaire filled by participants following the recording session, a number of statistical analyses were performed over the self-conscious and unconscious by means of statistical tools including t-test, analysis of variance and regression. The results of statistical tests indicated that there are significant differences for the cognition of liking or preferring among different choices and based on the selections made by women and men. Furthermore, the lack of existence of a significant difference between conscious and unconscious choices were rejected. 

کلیدواژه‌ها [English]

  • EEG signal
  • Neuromarketing
  • Independent component analysis
  • Approximate Entropy
  • Neurofuzzy
  • statistical analysis
  • Brain mapping

[1]   N. Lee, A. J. Broderick, L. Chamberlain, “What is ‘neuromarketing’? A discussion and agenda for future research,” International Journal of Psychophysiology, vol. 63, pp.199–204, 2007.

[2]   T. Schneider, S. Woolger, “Neuroscience beyond the laboratory: Neuro knowledges, technologies and Markets,” BioSocieties, vol.10, pp.389–399, 2015.

[3]   RP. Bagozzi, M. Gopinath, PU. Nyer, “The role of emotions in marketing,” J Acad Market Sci, vol. 27, no. 2, pp.184-206, 1999.

[4]   P. Renvoise, C. Morin, “Neuromarketing: Understanding the Buy Buttons in Your Customer's Brain”. Kindle Edition, Nashville, Tenn.: Thomas Nelson; London: New Holland, 2008.

[5]   G. Vecchiato, J. Toppi, L, Astolfi, et al., “Spectral EEG frontal asymmetries correlate with the experienced pleasantness of TV commercial advertisements,” Med Biol Eng Comput, vol. 49, pp. 579–583, 2011.

[6]   U. Karmarkar, “Note on Neuromarketing. Harvard Business School Background Nore Marketing Unit Case,” 512-031, Sep. 2011.

[7]   B. Veronica, “Brief history of neuromarketing,” J Bert Rus, pp.119-121, 2009.

[8]   M. Cohen, CE. Elger, C. Ranganath, “Reward expectation modulates feedback-related negativity and EEG spectra. Neuroimage,” vol. 35, no. 2, pp. 968-78, Apr 2007.

[9]   M. M. IzadkhahS. yahyaie, “Analysis of Conscious and Unconscious Animation Audience Behavior in Children Using Neuromarketing,” New Media Studies, vol 2, issue 5, pp. 102-135, 2016.

[10]         G. Vecchiato, J. Toppi, L. Astolfi , F.V. Fallani, F. Cincotti , D. Mattia , F. Bez ,  F. Babilo, “Spectral EEG frontal asymmetries correlate with the experienced  pleasantness of TV commercial advertisements,” Med Biol Eng Comput, vol. 49:, pp.579–583, 2011.

[11]D. Ariely, G. S. Berns, “Neuromarketing: the hope and hype of neuroimaging in business”, Nat Rev Neurosci. Vol. 11, no. 4, pp. 284–292, April 2010.

[12]T. Nomura, Y. Mitsukura, “Extraction of unconscious emotions while watching TV commercials”, IECON2015-Yokohoma, November 9-12.2015.

[13]A. Telpaz, R. Webb, D. J. Levy, “Using EEG to predict consumers’ future choices,” Journal of Marketing Research, vol. 52, no. 4, pp. 511-529, 2015.

[14]K. Hengsberg, “Neuromarketing-fundamentals and insights for advantageous advertising in a luxury watch context,” Doctoral dissertation, Msc thesis in marketing, Dublin Business School 2015.

[15]S. Raiesdana, “Automated sleep staging of OSAs based on ICA preprocessing and consolidation of temporal correlations,” Australasian Physical & Engineering Sciences in Medicine, vol. 41, pp. 161–176, March 2018.

[16]M. Costa, A. L. Goldberger, C. K. Peng, Multiscale entropy analysis of biological signals, Physical review, vol. 71, 021906-1:18, 2005.

[17]S. M. pincus, “Approximate entropy as a measure of system complexity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 6, pp.2297-2301,1991.

[18]S. Heykin, “Neural network, a comprehensive foundation”. 1thed. John Wiley & Sons, New York, 1999.

[19]R. Christensen,”Analysis of Variance, Design and Regression, Applied Statistical method,” Chapman & Hall/CRC Texts in Statistical Science, Chapman and Hall/CRC; 1 edition (June 1, 1996.

[20]https://sccn.ucsd.edu/eeglab/index.php

[21]Delorme, J. Palmer, R. Oostenveld, J. Onton, S. Makeig, “Independent EEG components are dipolar”, PLos One. doi.org/10.1371/journal.pone.0030135, Feb. 2012.

[22]CM. Held, JE. Heiss, PA. Estévez, CA. Perez, M. Garrido, C. Algarín, P. Peirano, “Extracting fuzzy rules from polysomnographic recordings for infant sleep classification”. IEEE Trans Biomed Eng, vol. 53, no. 10, pp. 1954-1962, 2006.

[23]M. Yadava, P. Kumar, R. Saini, P. Pratim Roy, D. Prosad Dogra, “Analysis of EEG signals and its application to neuromarketing Analysis of EEG signals and its application to neuromarketing”, Multimed Tools Appl, DOI 10.1007/s11042-017-4580-6.

[24]M. Yadava, P. Kumar, R. Saini, P. Pratim Roy, D. Prosad Dogra, “Analysis of EEG signals and its application to neuromarketing Analysis of EEG signals and its application to neuromarketing”, Multimed Tools Appl, DOI 10.1007/s11042-017-4580-6.

[25]         B. Yılmaza, S. Korkmazb, D. B. Arslanb, E. Güngörb, M. H. Asyalı, “Like/dislike analysis using EEG: Determination ofmost discriminative channels and frequencies”, Computer methods and programs in biomedicine, vol. 1 1 3, pp. 705–713, 2014.

[26]R. Ohme, D. Reykowska, D. Wiener, et al. “Application of frontal EEG asymmetry to advertising research”, Journal of Economic Psychology vol. 31, no. 5, pp. 758-793, 2010.

[27]C. Molin, “A Neuromarketing research: investigating consumers’ self-declared and biometric emotional responses to products”, Master Thesis, Management Engineering Department, Politecnico di Milano university, 2015.