نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه بیوالکتریک، دانشکده‌ی مهندسی برق، دانشگاه علم و صنعت ایران، تهران، ایران

2 استادیار، گروه بیوالکتریک، دانشکده‌ی مهندسی برق، دانشگاه علم و صنعت ایران، تهران، ایران

3 دانشجوی دکتری بیوالکتریک، گروه بیوالکتریک، دانشکده‌ی مهندسی برق، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

سرطان یکی از عوامل اصلی مرگ در دنیای امروز است. مدل‌های ریاضی و کامپیوتری می­تواند به محققان در درک بهتر این بیماری و بهبود روش‌های درمانی فعلی کمک کند. مدل‌های جدید ارائه شده ممکن است به معرفی روش‌های درمانی جدیدی منجر شود. در این مقاله، یک مدل اتوماتای سلولی شبکه‌ی مربعی از رشد تومور جامد، بدون رگ و ناهمگون با در نظرگرفتن اثر سیستم ایمنی ارائه شده است. در نظر گرفتن توام ناهمگونی زمانی و مکانی در فرایند رشد که در بسیاری از مدل‌ها در نظر گرفته نشده، یکی از نوآوری‌های این مدل است. علاوه بر اندرکنش سلول سالم-تومور، هر سلول تومور در شبکه­ی مدل می‌تواند با سلول‌های ایمنی در همسایگی خود نیز اندرکنش داشته باشد. فرار و حتی نجات سلول توموری از سلول­های ایمنی و در نظر گرفتن مدلی ساده برای نمایش اثر فراخوانی سیستم­های ایمنی به بافت مورد مطالعه، از دیگر نوآوری‌های این مقاله به شمار می‌رود. در این تحقیق، قوانین تغییر حالات هر سلول با استفاده از مدلی تصادفی تعریف شده است. شبیه‌سازی‌ها در این مقاله برای دو حالت با/بدون در نظر گرفتن سیستم ایمنی انجام شده است. علاوه بر نمایش گرافیکی دوبعدی رشد، پارامترهای کسر رشد و کسر نکروتیک به عنوان خروجی­های مدل در نظر گرفته شده است. شبیه­سازی‌ها نشان می­دهد که مدل با ساختار ناهمگون، نتایج سازگارتری با  بیولوژی سرطان داشته و با داده‌های تجربی انطباق بیش‌تری دارد. هم‌چنین شبیه­سازی­ها نشان می­دهد که تعداد سلول­های موثر ایمنی با دینامیکی مشابه سلول­های توموری افزایش می­یابد. در این مقاله هم‌چنین به مقایسه‌ی نتایج حاصل از شبیه­سازی­­ها با نتایج مطرح شده در مراجع و بررسی تاثیر پارامترهای مدل در مراحل مختلف رشد از نقطه‌نظر درمانی پرداخته­ شده است.

کلیدواژه‌ها

عنوان مقاله [English]

Presenting a Heterogeneous Tumor Growth Model based on Cellular Automata Algorithm by Considering the Effect of Effective Immune Cells: Study the Model from Cancer Therapy Viewpoint

نویسندگان [English]

  • Fateme Pourhasanzade 1
  • Seyed Hojat Sabzpoushan 2
  • Danial Makvandi 3

1 Ph.D. Student, Research Laboratory of Biomedical Signals and Sensors, Biomedical Engineering Department, Iran University of Science and Technology (I.U.S.T), Tehran, Iran

2 Assistant Professor, Biomedical Engineering Department, Iran University of Science and Technology (I.U.S.T), Tehran, Iran

3 Ph.D. Student, Research Laboratory of Biomedical Signals and Sensors, Biomedical Engineering Department, Iran University of Science and Technology (I.U.S.T), Tehran, Iran

چکیده [English]

Cancer is a leading cause of death in the world. Mathematical and computer models may help scientists to better understand it, and improve current treatments. They may also introduce new aspects of therapy. In this paper, a Cellular Automata model of tumor by emphasizing on immune system is presented. Considering the spetio-temporal heterogeneity that is not considered in most mathematical models, is one of the novelity of this work. In presented model each tumor cell in a square lattice can interact with both immune and normal cells in its Moore neighborhood. The rules for updating the states of the model are stochastic. Modeling tumor cells scaping from immune system and their survivance and considering immune system recurrement into the studied tissue is another innovation of this model. The results of our simulations are presented with/without considering immune system. The growth fraction and necrotic fraction are considered as output parameters of model as well as a 2-D graphical growth presentation. Results show that considering the heterogeneity will improve the compatibility of the model with biological reality and experimental studies. It can be seen that the number of immune cells increases during the tumor growth and follows the same dynamics as tumor cells. In this paper, we have innovatively focused on the effect of model parameters on different steps of tumor growth from the cancer therapy viewpoint. 

کلیدواژه‌ها [English]

  • heterogeneous tumor growth modeling
  • effective immune cells
  • Cellular automata

[1]   http://www.who.int/mediacentre/factsheets/fs297/en

[2]   D. Rodrigues, J. Louçã “Cellcom: A Hybrid Cellular Automaton Model of Tumorous Tissue Formation and Growth” - Master program in Complexity Sciences (ISCTE/FCUL, Lisbon).

[3]   E. A. Reis, L. B. L. Santos, S. T. R. Pinho, “A cellular automata model for avascular solid tumor growth under the effect of therapy”, Physica A 388, pp. 1303-1314, 2009

[4] M. S. Alber, M. A. Kiskowski, Glazier J. A., & Jiang Y. "On cellular automaton approaches to modeling biological cells.", In Mathematical Systems Theory in Biology, Communications, Computation, and Finance, pp. 1-39. Springer New York, 2003.

[5]   M. Ghaemi, A. Shahrokhi.,”Combination of The Cellular Potts Model and Lattice Gas Cellular Automata For Simulating The Avascular Cancer Growth”, ACRI'06 Proceedings of the 7th international conference on Cellular Automata for Research and Industry, pp. 297-303, 2006.

[6]   “Third generation Disease Models “, Health-e-Child - IST-2004-027749 - Deliverable D.11.4 , http://www-sop.inria.fr/asclepios/projects/Health-e-Child/DiseaseModels/content/brain/ TumorGrowth1review.html 

[7]   H.M.Byrne, T.Alarcon, M.R.Owen, S.D.Webb, P. K. Maini, “Modelling aspects of cancer dynamics: a review”, Philos Trans A Math Phys Eng Sci.,vol. 364, pp. 1563-1578, 2006.

[8]   S. Torquato, “ Toward an Ising model of cancer and beyond”, Phys. Biol., vol. 8, no. 1,  2011.

[9]   L.G. Marcu, WM. Harriss-Phillips, “In Silico Modelling of Treatment-Induced Tumour Cell Kill: Developments and Advances”, Computational and Mathematical Methods in Medicine, Volume 2012, Article ID 960256, 2012.

[10]M. R. Gallas, M. R. Gallas, and J. A. Gallas, "Distribution of chaos and periodic spikes in a three-cell population model of cancer," Eur. Phys. J. Special Topics, vol. 223, pp. 2131-2144, 2014

[11]قدسی ت، سبزپوشان س ح، پورحسن‌زاده ف، "تجزیه‌وتحلیل نقش پارامترها در رفتار آشوبگونه­ی یک سیستم سرطانی و تفسیر بیولوژیکی آن". فصلنامه مهندسی پزشکی زیستی، دوره 11، شماره 1، صفحه 31-40.

[12]K. C. Keng, “Analysis of a Tumour Growth Model with MATLAB”, 2009.

[13]ع غفاری ، ک عزیزی، م امینی، "مدل سازی ریاضی سرطان و طراحی پروتکل شیمی درمانی بهینه با استفاده از معیار پایداری لیاپانوف"، مجله دانشکده پزشکی اصفهان، سال بیست و نهم، شماره174 ، ویژه نامه مهندسی پزشکی، 1390 

[14]A. Swierniak, U. Ledzewicz, and H. Schattler, “Optimal control for a class of compartmental models in cancer chemotherapy,” International Journal of Applied Mathematics and Computer Science, vol. 13, pp. 357-368, 2003.

[15]A. Swierniak, A. Polanski, and M. Kimmel. "Optimal control problems arising in cell cycle specific cancer chemotherapy." Cell proliferation, vol 29, no. 3, pp. 117-139, 1996.

[16]S. J. Merrill, "Foundations of the use of an enzyme-kinetic analogy in cell-mediated cytotoxicity," Mathematical Biosciences, vol. 62, no. 2, pp. 219-235, 1982.

[17]S. Eikenberry, C. Thalhauser, and Y. Kuang, "Tumor-immune interaction, surgical treatment, and cancer recurrence in a mathematical model of melanoma," PLoS computational biology, vol. 5, no. 4, p. e1000362, 2009.

[18]K. P. Wilkie and P. Hahnfeldt, "Modeling the Dichotomy of the Immune Response to Cancer: Cytotoxic Effects and Tumor-Promoting Inflammation," Bulletin of Mathematical Biology, pp. 1-23, 2017.

[19]R. Yafia, "A study of differential equation modeling malignant tumor cells in competition with immune system," International Journal of Biomathematics, vol. 4, no. 02, pp. 185-206, 2011.

[20]J. Adam and N. Bellomo, A survey of models for tumor-immune system dynamics. Springer Science & Business Media, 2012.

[21]K. P. Wilkie, “A review of mathematical models of cancer–immune interactions in the context of tumor dormancy," in Systems Biology of Tumor Dormancy: Springer, 2013, pp. 201-234.

[22]A. Bellouquid, E. De Angelis, and D. Knopoff, "From the modeling of the immune hallmarks of cancer to a black swan in biology," Mathematical Models and Methods in Applied Sciences, vol. 23, no. 05, pp. 949-978, 2013.

[23]R. Eftimie, J. L. Bramson, and D. J. Earn, "Interactions between the immune system and cancer: a brief review of non-spatial mathematical models," Bulletin of mathematical biology, vol. 73, no. 1, pp. 2-32, 2011.

[24]V. Kuznetsov, "Basic Models of Tumor-Immune System," A Survey of Models for Tumor-Immune System Dynamics, p. 237, 2012.

[25]N. McGranahan, C. Swanton, “Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future”, Cell, vol. 168, no. 4, pp.613-628, 2017.

[26]J West, Z Hasnain, P Macklin, PK Newton,  “An Evolutionary Model of Tumor Cell Kinetics and the Emergence of Molecular”, SIAM Review, vol. 58, no. 4, pp. 716-736, 2016.

[27]JM Greene, D Levy, KL Fung, PS Souza, MM Gottesman, O Lavi, “Modeling intrinsic heterogeneity and growth of cancer cells”, Journal of theoretical biology, vol. 367, pp. 262-277, 2015.

[28]A. Toma, A. Mang, T. A. Schuetz, S. Becker, & T. M. Buzug, "A novel method for simulating the extracellular matrix in models of tumour growth", Computational and mathematical methods in medicine 2012 (2012).  

[29]S. H. Sabzpoushan, F. Pourhasanzade, “A cellular Automata-based Model for Simulating restitution Property in a Single Heart cell”, Journal of medical signals and sensors, vol. 1, no. 1, pp. 19, 2011.

[30]W. Materi, and D. S. Wishart, “computational systems biology in cancer modeling Methods and Applications”, Gene Regulation and Systems Biology, vol. 1, pp. 91–110, 2007

 

[31]J. Moreira, A. Deutsch, “cellular automaton models of tumor development: a critical review”, Advances in Complex Systems, vol. 5, no. 2-3. , pp. 247-267, 2002.

[32]A. S. Qi, X. Zheng, C. Y. Du, & B. S. An, "A cellular automaton model of cancerous growth." Journal of theoretical biology 161, no. 1 (1993): 1-12.  

[33]A. R. Kansal, & S. Torquato, G. R. Harsh, E. A. Chiocca, and T. S. Deisboeck, “Simulated brain tumour growth dynamics using a three-dimensional cellular automaton”, Journal of Theoretical Biology, vol. 203, no. 4., pp. 367-382, 21 April 2000.

[34]S. Dormann, and A. Deutsch, “Modelling of self-organized avascular tumour growth with a hybrid cellular automaton”, In silico biology, vol. 2, no. 3. , pp. 393-406, 2002.

[35]A. Züleyha, M. Ziya, Y. Selçuk, and Ö. M. Kemal, "Simulation of glioblastoma multiforme (GBM) tumor cells using ising model on the Creutz Cellular Automaton," Physica A: Statistical Mechanics and its Applications, vol. 486, pp. 901-907, 2017.

[36]E. Bavafaye-Haghighi, MJ Yazdanpanah, B. Kalaghchi, H. Soltanian-Zadeh, “Multiscale cancer modeling: In the line of fast simulation and chemotherapy”, Mathematical and Computer Modelling, vol. 49, no. 7, pp. 1449-64, 2009.

[37]ایرانمنش ف،  نظری م، "مدل‌سازی پدیده رشد تومور فاقد رگ با رویکرد مدل ساختاری با استفاده از روش المان محدود"، مهندسی مکانیک مدرس. دوره 17، شماره 3، خرداد 1396، صفحه 115-122

[38]روغنی یزدی، نقوی، حسینی "مدل سازی و شبیه‌سازی فرآیند رشد عروقی تومور"، فصلنامه مهندسی پزشکی زیستی، دوره 9، شماره 2، تابستان 1394، صفحه 143-161

[39]N. Naghavi, FS Hosseini, M. Sardarabadi, H. Kalani, “Simulation of tumor induced angiogenesis using an analytical adaptive modeling including dynamic sprouting and blood flow modeling”, Microvascular research. vol. 107, pp. 51-64, 2016.

[40]D. Asemani, D. Haemmerich,  “A Unified Mathematical Model for Nano-Liposomal Drug Delivery to Solid TumorsA Unified Mathematical Model for Nano-Liposomal Drug Delivery to Solid Tumors”, IEEE transactions on nanobioscience, vol. 17, no. 1 pp. 3-11, 2017.

[41]M. Sefidgar, M. Soltani, K. Raahemifar, M. Sadeghi, H. Bazmara, M. Bazargan, MM. Naeenian, “Numerical modeling of drug delivery in a dynamic solid tumor microvasculature”, Microvascular research, vol. 99, pp. 43-56, 2015.

[42]SR Mahdavi, EJ Gharehbagh, B Mofid, AH Jafari, AR Nikoofar, “Accuracy of the dose delivery in prostate cancer patients-using an electronic portal imaging device (EPID)”, International Journal of Radiation Research. vol. 15, no. 1, p.39, 2017.

[43]پورحسن زاده ف، سبزپوشان س ح، علیزاده ع م، عصمتی ا، چمنی ر. "مدل رشد تومور جامد بدون رگ بر اساس چرخه سلولی با استفاده از اتوماتای سلولی". مجله مدل سازی پیشرفته ریاضی. شماره 6، دوره 2، صفحه 55-74. 1395

[44]S. Sabzpoushan and F. Pourhasanzade, “A new method for shrinking tumor based on microenvironmental factors: Introducing a stochastic agent-based model of avascular tumor growth”, Physica A. vol. 508, pp. 771–787, 2018.

[45]J. E. Schmitz, A. R. Kansal, and S. Torquato,” A cellular automaton model of brain tumor treatment and resistance”, Journal of Theoretical Medicine, vol. 4 (4), pp. 223–239, 2002.

[46]Abbasnejad, “Mathematical modeling of cancer cells and chemotherapy protocol dealing optimization using fuzzy differential equations and lypunov stability criterion”, Journal of Artificial Intelligence in Electrical Engineering, vol. 4, no. 14, pp.19-28.

[47]J. N. Blattman and P. D. Greenberg, "Cancer immunotherapy: a treatment for the masses," Science, vol. 305, no. 5681, pp. 200-205, 2004.

[48]W. Düchting, "A model of disturbed self-reproducing cell systems," Biomathematics and cell kinetics, vol. 2, pp. 133-142, 1978.

[49]A. A. Patel, E. T. Gawlinski, S. K. Lemieux, and R. A. Gatenby, "A cellular automaton model of early tumor growth and invasion: the effects of native tissue vascularity and increased anaerobic tumor metabolism," Journal of Theoretical Biology, vol. 213, no. 3, pp. 315-331, 2001.

[50]B. Ribba, T. Alarcón, K. Marron, P. K. Maini, and Z. Agur, "The use of hybrid cellular automaton models for improving cancer therapy," in International Conference on Cellular Automata, 2004, pp. 444-453: Springer.

[51]R. G. Abbott, "CancerSim: A computer-based simulation of Hanahan and Weinberg's Hallmarks of Cancer," University of New Mexico, 2002.

[52]J. Poleszczuk and H. Enderling, "A high-performance cellular automaton model of tumor growth with dynamically growing domains," Applied mathematics, vol. 5, no. 1, p. 144, 2014.