نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 کارشناسی ارشد، مخابرات سیستم، دانشکده‌ی مهندسی برق و کامپیوتر، دانشگاه شیراز، شیراز، ایران

2 دانشیار، بخش مهندسی مخابرات و الکترونیک، دانشکده‌ی مهندسی برق و کامپیوتر، دانشگاه شیراز، شیراز، ایران

3 دانشجوی دکتری، آزمایشگاه پردازش سیگنال و تصویر، بخش مهندسی مخابرات و الکترونیک، دانشکده‌ی مهندسی برق و کامپیوتر، دانشگاه شیراز، شیراز، ایران

10.22041/ijbme.2020.123852.1583

چکیده

امروزه سرطان یکی از شایع‌ترین بیماری‌ها بوده و سرطان مغز یکی از مهلک‌ترین و مرگ‌آورترین انواع سرطان است که تشخیص درست و به موقع آن تاثیر مهمی در زندگی بیمار دارد. پزشکان برای تشخیص این بیماری به تصویرهای ام‌آرآی و سی‌تی‌اسکن مغز نیاز دارند. تا کنون روش‌های مختلفی برای تشخیص تومور مغزی با استفاده از تصاویر پزشکی ارائه شده است اما این روش‌ها به دلیل شباهت زیاد بافت تومور و سایر بافت‌های مغز از دقت مناسبی برخوردار نیستند. در این مقاله روشی با استفاده از تلفیق تصاویر ام‌آرآی و سی‌تی‌اسکن برای تشخیص سه نوع شایع از تومورهای مغزی (گلیوما، منژیوما و تومور هیپوفیز) پیشنهاد شده است. در این روش از ساختاری بر مبنای یادگیری عمیق استفاده شده تا ویژگی‌های متمایزکننده‌ی بافت مغز و تومور استخراج شود. تصویر تلفیقی به دست آمده دقت تشخیص نوع تومور را افزایش داده و نتایج به دست آمده با استفاده از روش پیشنهادی برتری این روش را نسبت به سایر روش‌ها نشان می‌دهد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Brain Tumor Detection using Fusion of MRI and CT Scan Images based on Deep Learning Feature Extraction Methods

نویسندگان [English]

  • Dorsa Jafarkhah Seighalani 1
  • Mehran Yazdi 2
  • Mohammad Faghihi 3

1 M.Sc. Graduated, Communication Engineering (System), School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran

2 Associate Professor, Department of Communication and Electronical Engineering, School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran

3 Ph.D. Student, Signal and Image Processing Lab, Department of Communication and Electronical Engineering, School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran

چکیده [English]

Cancer is one of the most common diseases at the present time. Among different types of this disease, brain cancer has a high fatality rate and accurate and timely diagnosis of it, can have a major impact on the patient’s life. Doctors need MRI and CT scan of brain to diagnose this condition. A precise image processing technique can help the medical specialists and speed up the diagnosis process. Many methods have been proposed to recognize brain tumors in medical images; however their accuracies were not acceptable. In fact, low accuracy is a result of the similarities between brain and tumor tissue. In this paper we propose a tumor recognition method using fusion of MRI and CT Scan images. This method exploits a deep learning based feature extraction algorithm that helps to distinguish tumors from brain tissue. Tumor recognition and accuracy calculation is performed for three common types of brain tumors (glioma, meningioma, and pituitary tumor). Our results show a great improvement of performance in comparison to related works. 

کلیدواژه‌ها [English]

  • MRI Image
  • CT Scan Image
  • Image fusion
  • Brain Cancer
  • Deep Learning
  • Neural Networks
  1. DeAngelis, L.M. “Brain tumors”. New England Journal of Medicine, 344(2), pp.114- 123, 2001.
  2. K Sharmila, S Rajkumar, V Vij ayaraj an, "Hybrid method for multimodality medical image fusion using Discrete WaveletTransform and Entropy concepts with Quantitative Analysis", International conference on Communication and Signal Processing, pp.489-493, April 2013.
  3. Pajares, G., & De La Cruz, J. M. (2004). A wavelet-based image fusion tutorial. Pattern recognition, 37(9), 1855-1872.
  4. Pesquet, J. C., Krim, H., & Carfantan, H. (1996). Time-invariant orthonormal wavelet representations. IEEE transactions on signal processing, 44(8), 1964-1970.
  5. Srinivas, P. Bala, and B. Venkatesh. "Comparative Analysis of DWT SWT DWT & SWT and DT-CWT-Based Satellite Image Resolution Enhancement." International Journal of Electronics & Communication Technology (IJECT) 5.4 (2014): 137-141.
  6. Rajkumar, S., et al. "CT and MRI image fusion based on Wavelet Transform and Neuro-Fuzzy concepts with quantitative analysis." Electronics and Communication Systems (ICECS), 2014 International Conference on. IEEE, 2014Kolb, Bryan, and Ian Q. Whishaw. “An introduction to brain and behavior”. Worth Publishers, 2001.
  7. Ranjan, R., Singh, H., Meitzler, T. and Gerhart, G.R. “Iterative image fusion technique using fuzzy and neuro fuzzy logic and applications”. In Fuzzy Information Processing Society, 2005. NAFIPS 2005. Annual Meeting of the North American IEEE, pp.706-710, 2005.
  8. Na, Y., Zhao, L., Yang, Y. and Ren, M. “Guided filter-based images fusion algorithm for CT and MRI medical images”. IET Image Processing, 12(1), pp.138-148, 2017.
  9. Yang, Jingming, et al, "A novel fusion technique for CT and MRI medical image based on NSST." 2016 Chinese Control and Decision Conference (CCDC). IEEE, 2016.
  10. Yang, L., Guo, B. L., & Ni, W. (2008). Multimodality medical image fusion based on multiscale geometric analysis of contourlet transform. Neurocomputing, 72(1-3), 203-211.
  11. Bahadure, Nilesh Bhaskarrao, Arun Kumar Ray, and Har Pal Thethi. "Image analysis for MRI based brain tumor detection and feature extraction using biologically inspired BWT and SVM." International journal of biomedical imaging 2017 (2017).
  12. Bengio, Yoshua, Ian Goodfellow, and Aaron Courville. Deep learning. Vol. 1. MIT press, 2017.
  13. Pereira, S., Pinto, A., Alves, V. and Silva, C.A. "Brain tumor segmentation using convolutional neural networks in MRI images". IEEE transactions on medical imaging, 35(5), pp.1240-1251, 2016.
  14. Thaha, M. Mohammed, et al. "Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images." Journal of medical systems 43.9 (2019): 294
  15. Nie, Dong, et al. "Fully convolutional networks for multi-modality isointense infant brain image segmentation." 2016 IEEE 13Th international symposium on biomedical imaging (ISBI). IEEE, 2016.
  16. Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for largescale image recognition." arXiv preprint arXiv: 1409.1556 (2014).
  17. Li, Shutao, Xudong Kang, and Jianwen Hu. "Image fusion with guided filtering." IEEE Transactions on Image processing 22.7 (2013): 2864-2875.
  18. https://proteomics.cancer.gov/programs/cptac
  19. https://portal.brain-map.org/
  20. Ma, Jiayi, Yong Ma, and Chang Li. "Infrared and visible image fusion methods and applications: A survey." Information Fusion 45 (2019): 153-178.
  21. Hsu, Chih-Wei, and Chih-Jen Lin. "A comparison of methods for multiclass support vector machines." IEEE transactions on Neural Networks 13.2 (2002): 415-425.
  22. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, ”Image quality assessment: from error visibility to structural similarity”, IEEE Transactions on Image Processing 13 (4) (2004) 600–612.