Document Type : Full Research Paper


1 Post-Doctoral Researcher, Bioelectromagnetics Laboratory, School of Electrical and Computer Eng., University of Tehran

2 B.Sc. Student, School of Electrical and Computer Eng., University of Tehran

3 Professor, Center of Excellence on Applied Electromagnetic Systems, University of Tehran



We introduce a new computational approach which is capable of providing estimations of the electric field strength induced in biological bodies at large to ultra-fine scales. The method is theoretically based on multi-scale analysis and excitation of the smaller-scale models by the computed fields at the larger-scale model. The method and its implementation are shown, and as a practical example, the electric field induced inside the plasma membrane has been successfully computed for cells residing at different locations in the human body-model. Also discussed are the origins of the frequency-dependent behavior of the induced field strength and the significance of its practical consequences for bioelectromagnetics.


Main Subjects

[1]     Sheppard A., Roland G., FGF. [Online].; 2001
[2]     Hochmuth R., Deuflhard P., Multiscale analysis for the Bio-heat transfer equation; Final Report, ZIB (Konrad-Zuse Zentrum fuer Informationstechnik Berlin), April 2003.
[3]     Corovic S., Lackovic I.,  Sustaric P., Sustar T.,  Rodic T., Miklavcic D., Modeling of electric field distribution in tissues during electroporation; BioMedical Engineering OnLine,  2013; 12 (16).
[4]     Liberti M., Apollonio F., Merla C., D’Inzeo G., Microdosimetry in the microwave range: a quantitative assessment at single cell level; IEEE Trans. Antennas and Wireless Propag. Lett., 2009;  8: 865-869.
[5]     Apollonio F., Liberti M., D’Inzeo G., Tarricone L., Integrated Models for the Analysis of Biological Effects of EM Fields Used for Mobile Communications; IEEE Trans Microwave Theory Tech., 2000; 48(11): 2082-20950.
[6]     Esser A.T., Smith K.C., Gowrishankar T.R., Weaver J.C., Towards Solid Tumor Treatment by Irreversible Electroporation: Intrinsic Redistribution of Fields and Currents in Tissue; Technology in Cancer Research and Treatment, 2007; 6(4): 261-276.
[7]     Zubal I.G., et al., Computerized three-dimensional segmented human anatomy; Medical Physics, 1994; 21(2): 299-302.
[8]     Alekseev S.I., Radzievsky A.A., Logani M.K., Ziskin M.C., MillimeterWave Dosimetry of Human Skin; Bioelectromagnetics, 2008; 29: 65-70.
[9]     Huclova S., Erni D., Fröhlich J., Modelling and validation of dielectric properties of human skin in the MHz region focusing on skin layer morphology and material composition; J. Physics D: Applied Physics, 2012; 45: 025301.
[10]  ساویز م، تحلیل ساختارهای الکترومغناطیسی پریودیک با استفاده از معادلات انتگرالی و کاربرد آن در ساختارهای زیستی در ابعاد سلولی؛ رساله دکتری، دانشگاه تهران، دانشکده مهندسی برق و کامپیوتر، بهمن ماه 1392.
[11]  Saviz M., et al., A new open-source toolbox for estimating the electrical properties of biological tissues in the terahertz frequency band; Journal of Infrared, Millimeter, and Terahertz Waves, 2013; 34(9): 529-538.
[12]  Gabrieiel S., Lau R.W., Gabriel C., The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues; Phys. Med. Biol., 1996; 41: 2271-2293.
[14]  Simeonova M., Gimsa J., The influence of the molecular structure of lipid membranes on the electric field distribution and energy absorption; Bioelectromagnetics, 2006; 27: 652-666.
[15]  Grosse C., Schwan H.P., Cellular membrane potentials induced by alternating fields; Biophys. J., 1992; 63: 1632-1642.
[16]  Gimsa J., Müller T., Schnelle T., Fuhr G., Dielectric Spectroscopy of Single Human Erythrocytes at Physiological Ionic Strength: Dispersion of the Cytoplasm; Biophysical Journal, 1996; 71: 495-506.
[17]  Gowrishankar T.R., Weaver J.C., An approach to electrical modeling of single and multiple cells; PNAS , 2003; 100(6): 3203-3208.