Document Type : Full Research Paper

Authors

1 Ph.D Student, Research Center for Advanced Materials and Mineral Processing, Faculty of Materials Engineering, Sahand University of Technology

2 Associate Professor, Research Center for Advanced Materials and Mineral Processing, Faculty of Materials Engineering

3 M.Sc, Research Center for Advanced Materials and Mineral Processing, Faculty of Materials Engineering

10.22041/ijbme.2012.13119

Abstract

In this study, a hydroxyapatite/carbon nanotubes composite was coated at room temperature on NiTi shape memory alloy (SMA) through electrochemical deposition using stable suspension which was prepared by adding 4 g natural hydroxyapatite powder and 1 wt. % CNTs to 50 ml n-butanol. Suspension was stabilized using triethylenamine as dispersant. Surface characteristics, adhesion strength, stability and bioactivity of the composite coating were subsequently studied. EDX examination of the composite coating surface revealed homogeneous dispersion of carbon nanotubes all over coating. Also, the bonding strength of composite coating was found to be about 24 MPa. Compared to NiTi sample coated with hydroxyapatite and coated with hydroxyapatite/carbon nanotubes, the bode and nyquist plots of NiTi samples with hydroxyapatite/carbon nanotubes composite coating suggested that the composite coating was chemically more stable and provided corrosion resistance for NiTi SMA. In-vitro bioactivity test in SBF showed that the presence of CNTs in HA/CNTs composite coating does not have negative effect on ability of apatite formation.

Keywords

[1]     M.F. Chen, X.J. Yang, R.X. Hu, Z.D. Cui, H.C. Man, Bioactive NiTi shape memory alloy used as bone bonding implants, Materials Science and Engineering C, 2004; 24: 497–502.
[2]     L. S. Castleman, S. Motzkin, F. P. Alicandri, V. L. Bonawit, Biocompatibility of nitinol alloy as an implant material; J. Biomed, Mater. RES. 1976, 10:  695-731.
[3]     J. Musialek , P. Filip, J. Nieslanik, Titanium-nickel shape memory clamps in small bone surgery; Arch Orthop Trauma Surg, 1998; 117: 341–344.
[4]     A. Bansiddhi, T.D. Sargeant, S.I. Stupp, D.C. Dunand, Porous NiTi for bone implants: A review; Acta Biomaterialia, 2008; 4: 773–782.
[5]     J. Choi, D. Bogdanski, M. Koeller, S.A. Esenwein, D. Mueller, G. Muhr, M. Epple, Calcium phosphate coating of nickel–titanium shape-memoryalloys. Coating procedure and adherence of leukocytes and platelets; Biomaterials, 2003; 24: 3689–3696.
[6]     Betty Leon, John A. Jansen; Thin Calcium Phosphate Coatings for Medical Implants; Springer Science Business Media, 2009.
[7]     A Ruksudjarit, K Pengpat, G Rujijanagul, T. Tunkasiri, Current applied physics 8, 2008, 270-272.
[8]     I. Singh, C. Kaya, M. S. P. Shaffer, B. C. Thomas and A. R. Boccaccini, Bioactive ceramic coatings containing carbon nanotubes on metallic substrates by electrophoretic deposition; J. Mater. Sci., 2006; 41(24): 8144–8151.
[9]     Y. Chen, T.H. Zhang, C.H. Gan, G.Yu, Wear studies of hydroxyapatite composite coating reinforced by carbon nanotubes; Carbon, 2007; 45: 998–1004.
[10] D. Lahiri, V. Singh, A. K. Keshri, S. Seal, A. Agarwal, Carbon nanotube toughened hydroxyapatite by spark plasma sintering;,  Microstructural evolution and multiscale tribological properties, Carbon, 2010; 48: 3103 – 3120.
[11] Y. Chen, Y. Q. Zhang, T. H. Zhang, C. H. Gan, C. H. Zheng, and G.Yu, Carbon nanotube reinforced hydroxyapatite composite coatings produced through laser surface alloying; Carbon, 2006;44: 37–45.
[12] R. L. Spear and R. E. Cameron, Carbon nanotubes for orthopaedic implants; Int J Mater Form 1, 2008; 127–133.
[13] Yu M-F, Lourie O, Dyer MJ, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, 2000; 287: 637–640.
[14] K. Balani, R. Anderson, T. Laha, M. Andara, J. Tercero, E. Crumpler, A. Agarwal, Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro; Biomaterials, 2007; 28: 618–624.
[15] E. Hirata, M. Uo, H. Takita, T. Akasaka, F. Watari, A. Yokoyama, Development of a 3D collagen scaffold coated with multiwalled carbon nanotubes, Journal of Biomedcal Materials Research Part B,  2009; 90B: 629-635.
[16] M. Terada, S. Abe, T. Akasaka, M. Uo, Y. Kitagawa, F. Watari, Development of a multiwalled carbon nanotube coated collagen dish, Dent. Mater. J., 2009; 28(1): 82-88.
[17] B. D. Hahn, J. M. Lee, D. S. Park, J. J. Choi, J. Ryu, W. H. Yoon, B. K. Lee, D. S. Shin, H. E.  Kim, Mechanical and in vitro biological performances of hydroxyapatite–carbon nanotube composite coatings deposited on Ti by aerosol deposition; Acta Biomaterialia, 2009; 5: 3205–3214.
[18] C. Kaya, Electrophoretic deposition of carbon nanotube-reinforced hydroxyapatite bioactive layers on Ti–6Al–4V alloys for biomedical applications; Ceramics International, 2008; 34: 1843–1847.
[19] Y. Bai, M. P. Neupane, S. Park, M. H. Lee, T. S. Bae, F. Watari, M. Uo, Electrophoretic deposition of carbon nanotubes–hydroxyapatite nanocomposites on titanium substrate, Materials Science and Engineering C, 2010; 30: 1043–1049.
[20] K. Grandfield, F. Sun, M. FitzPatrick, M. Cheong, I. Zhitomirsky, Electrophoretic deposition of polymer-carbon nanotube–hydroxyapatite composites; Surface & Coatings Technology, 2009; 203: 1481–1487.
[21] Omer O. Van der Biest, Luc J. Vandeperre, Electrophoretic deposition of materials; Annu. Rev. Mater. Sci.,1999; 29: 327–352.
[22] Z. Zhang, M.F. Dunn, T.D. Xiao, Nanostructured hydroxyapatite  coatings  for improved adhesion  and corrosionresistance  for medical  implants; Mater. Res. Soc. Symp. Proc.,2002; 703: 291-296.
[23] M. Javidi, S. Javadpour, M.E. Bahrololoom, J. Ma, Electrophoretic deposition of natural hydroxyapatite on medical grade 316L stainless steel; Materials Science and Engineering C, 2008; 28: 1509-1515.
[24] Z.C. Wang, F. Chen, L.M. Huang and C.J. Lin, Electrophoretic deposition and characterization of nano-sized hydroxyapatite particles; J.Mater. Sci., 2005; 40: 4955-4957.
[25] J. Ma, C. H.  Liang, L. B.  Kong, C. Wang, Colloidal characterization and electrophoretic deposition of hydroxyapatite on titanium substrate; Materials Science: Materials in Medicine, 2003; 797-801.
[26] P. Sarkar, P.S. Nicholson, Electrophoretic deposition (EPD); J. Am. Ceram. Soc., 1996; 79: 1987-2002.
[27] H. Maleki-Ghaleh, V. Khalili, J. Khalil-Allafi, M. Javidi Hydroxyapatite coating on NiTi shape memory alloy by electrophoretic deposition process; Surface & Coatings Technology, 2012; 208: 57–63.
[28] A. Oyane, H. M. Kim, T. Furuya, T. Kokubo, T. Miyazaki, T. Nakamura, Preparation and assessment of revised simulated body fluids; J. Biomed. Mater. Part A, 2003; 188-195.
[29] J. E. Tercero, S. Namin, D. Lahiri, K. Balani,  N. Tsoukias, A. Agarwal, Effect of carbon nanotube and aluminum oxide addition on plasma-sprayed hydroxyapatite coating's mechanical properties and biocompatibility; Materials Science and Engineering C, 2009; 29: 2195–2202.
[30] X. Li, X. Liu, J. Huang, Y. Fan, F. Z. Cui, Biomedical investigation of CNT based coatings; Surface & Coatings Technology, 2011; 206: 759–766.
[31] E.E. Stansbury, R. A. Buchanan, Fundamentals of electrochemical corrosion; ASM International: Materials Park, 2000, p: 248.
[32] S.L. Zhu, X.J. Yang, Z.D. Cui, Formation of Ca–P layer on the Ti-based bulk glassy alloy by chemical treatment; J. Alloys Compd., 2010; 504: 168-171.