Document Type : Full Research Paper

Authors

1 M.Sc, Biomaterial Group, Faculty of Biomedical Engineering, Amirkabir University of Technology

2 Phd, Biomaterial Group, Faculty of Biomedical Engineering, Amirkabir University of Technology

3 Phd Student, Biomaterial Group, Faculty of Biomedical Engineering, Amirkabir University of Technology

4 M.Sc Student, Biomaterial Group, Faculty of Biomedical Engineering, Amirkabir University of Technology

10.22041/ijbme.2011.13159

Abstract

Using microwave irradiation in microwave-assisted synthesis method is a new approach employed to decrease synthesis time and to form more homogenous structures of biphasic calcium phosphate bioceramics. In this research, the microwave assisted synthesis and characterization of biphasic calcium phosphate nanopowders have been studied. The phase transformation, chemical components, morphology and particle size were characterized by X-Ray Diffraction (XRD) analysis, Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The results showed that the use of microwave led to improve crystallinity and the crystallite size increases from 16 nm to 27 nm. Also the amount of hydroxyapatite phase in biphasic calcium phosphate changed in the range of 5% to 17%. The prepared sample was put in Simulated Body Fluid (SBF).The pH of the solution was decreased in the present of beta-tricalcium phosphate showed its biodegradable behavior. Also the nucleation and growth of hydroxyapatite particles on TCP produced by microwave -assisted synthesis method changed to be rod like in SBF solution.

Keywords

[1]     Z. LeGeros, R. and P. LeGeros, J., "Calcium Phosphate Bioceramics: Past, Present and Future", Key Engineering Materials, 2003, 240-242, 3-10.
[2]     Vallet-Regi M., Maria J., Calbet G., "Calcium phosphates as substitution of bone tissues", Progress in Solid State Chemistry, 2004, 32, 1–31.
[3]     Sinha A., Ingle A., Munim K. R., Vaidya S. N., Sharma B. P. and Bhisey A. N., "Development of calcium phosphate based bioceramics", Bull. Mater. Sci., 2001, 24, 653–657.
[4]     صولتی هشجین، مهران، "تاثیر روش سنتز پودر بر ریزساختار و خواص هیدروکسی آپاتیت"، رساله دکترا مهندسی مواد (سرامیک)، 1376.
[5]     Legeros R. Z., "Calcium Phosphate Materials in Restorative Dentistry: A Review", Adv Dent Res, 1988, 2, 164-180.
[6]     J. Kalita S., Bhardwaj A., A. Bhatt H., " Nanocrystalline calcium phosphate ceramics in biomedical engineering", Materials Science and Engineering C, 2007, 27,441–449.
[7]     Li Y., Weng W., Chiu Tam K., "Novel highly biodegradable biphasic tricalcium phosphates composed of α-tricalcium phosphate and β-tricalcium phosphate", Acta Biomaterialia 2007, 3, 251–254.
[8]     Kwon S.-H., Jun Y.-K., Hong S.-H., Hyoun- Kim E., "Synthesis and dissolution behavior of b-TCP and HA/b- TCP composite powders", Journal of the European Ceramic Society, 2003, 23, 1039–1045.
[9]     A. dos Santos E., Farina M., A. Soares G., "Specific proliferation rates of human osteoblasts on calcium phosphate surfaces with variable concentrations of α- TCP", Materials Science and Engineering C, 2007, 27, 61–66.
[10] Nicolazo C., Gautierb H., Brandao M. J., Daculsi G., Merle C., “Compactibility study of calcium phosphate biomaterials”, Biomaterials, 2003, 24, 255–262.
[11] S. Katti K., "Biomaterials in total joint replacement", Colloids and Surfaces B: Biointerfaces, 2004, 39, 133– 142.
[12] Pan L., Li Y., et al., "Preparation submicron biphasic α- TCP/HA powders", Key Engineering Materials, 2006, 309-311, 219-222.
[13] Williams D. F., “Biocompatibility of Tissue Analogs”, Ceramics and Composites Materials, 1985, 2, 43-66.
[14] Manjubala I., Sivakumar M., "In-situ synthesis of biphasic calcium phosphate ceramics using microwave irradiation", Materials Chemistry and Physics, 2001, 71, 272–278.
[15] Valefi M., Falamaki C., Ebadzadeh T., Solati Hashjin M., "New Insights of the Glycine-Nitrate Process For the Synthesis of Nano Crystalline 8YSZ", J. Am. Ceram. Soc., 2007, 90, 2008–2014.
[16] Youn M.-H., Paul R. K., Song H.-Y., Byong- Lee T., "Fabrication of Porous Structure of BCP Sintered Bodies Using Microwave Assisted Synthesized HAp Nano Powder", Materials Science Forum Vols. 2007, 534-536, 49-52.
[17] Joint Committee on Powder Diffraction Standards, Powder Diffraction Files: 09-0169 and 9-432.
[18] Mahabole M. P., Aiyer R. C., Ramakrishna C. V., Sreedhar B., Khairnar R. S., "Synthesis, characterization and gas sensing property of hydroxyapatite ceramic", Bull. Mater. Sci., 2005, 28, 535–545.
[19] Porter D. A., Easterling K. E., "Phase Transformations in Metals and Alloys", Van Nostrant Reinholrd Company, ISBN: 0-442 30439-0, 1981
[20] بهسا خوشنویس، " سنتز بیوسرامیک‌های کلسیم‌فسفاتی دوفازی و بررسی خواص فیزیکی و شیمیایی آنها"، پایان‌نامه کارشناسی ارشد مهندسی پزشکی، دانشگاه صنعتی امیرکبیر، 1384.
[21] Lazic S., Zec S., Miljevic N., Milonjic S., " The effect of temperature on the properties of hydroxyapatite precipitate from calcium hydroxide and phosphoric acid", Thermochimica Acta, 2001, 374, 13-22
[22] Silva C.C., Grac M.P.F., Valente M.A., Goes J.C., Sombra A.S.B.,"Microwave preparation, structure and electrical properties of calcium–sodium–phosphate biosystem", Journal of Non-Crystalline Solids, 2006, 352, 3512–3517.
[23] Mostafa N. Y.., "Characterization, thermal stability and sintering of hydroxyapatite powders prepared by different routes", Materials Chemistry and Physics, 2005, 94, 333– 341.
[24] Yanagisawa K., Zhu K., Fujino T., Onda A., Kajiyoshi K., Loku K., "Preparation of hydroxyapatite ceramics by hydrothermal hot pressing technique", Key Engineering Materials, 2006, 309- 311, 57-60