Document Type : Full Research Paper

Authors

1 M.Sc Student, Mechanical Engineering Department, Sharif University oh Technology

2 Professor, Mechanical Engineering Department, Sharif University oh Technology

10.22041/ijbme.2014.13288

Abstract

A hallmark of Alzheimer disease (the most common type of dementia in the elderly) is the aggregation and deposition of toxic species ranging from small soluble oligomers to insoluble fibril plaques of Amyloid-Beta protein originates from the cleavage of APP by Beta and Gama Secretase (Amyloid Hypothesis). An attractive therapeutic approach to treat AD is to identify small ligands capable of binding to A-Beta monomers and reverse its amyloidosis process. Here, a peptide drug having the sequence of GLMVG which has been derived from the C-terminal of A-Beta was used as breaker for a monomer of Beta sheet rich structure. The combination of Docking and Molecular Dynamics methods were used for simulation of drug-receptor interaction. This simulation implied that pentapeptide altered secondary structure of A-Beta monomer and declined its stability. This study proved that pentapeptide is capable to reverse Beta-sheet formation and can be considered as an AD drug in other preclinical studies.

Keywords

Main Subjects

[1]     J. Hardy, D. J. Selkoe, “The Amyloid Hypothesis of Alzheimer's Disease: Progress and Problems on the Road to Therapeutics” Science 297 (5580): 353-356, 2002.
[2]     S. Musardo, C. Saraceno, S. Pelucchi, E. Marcello, “Trafficking in neurons: Searching for new targets for Alzheimer's disease future therapies” European Journal of Pharmacology 719 (1–3): 84-106, 2013.
[3]     C. R. Harrington, "The Molecular Pathology of Alzheimer's Disease" Neuroimaging Clinics of North America. 22 (1): 11-22, 2012.
[4]     W. M. Tay, D. Huang, T. L. Rosenberry, A. K. Paravastu, "The Alzheimer's Amyloid-β(1–42) Peptide Forms Off-Pathway Oligomers and Fibrils That Are Distinguished Structurally by Intermolecular Organization" Journal of Molecular Biology 425 (14): 2494-2508, 2013.
[5]     K. L. Sciarretta, D. J. Gordon, S. C. Meredith, "Peptide‐Based Inhibitors of Amyloid Assembly, in Methods in Enzymology" K. Indu and W. Ronald, Editors, Academic Press: 273-312, 2006.
[6]     L. O. Tjernberg, C. Lilliehöök, D. J. Callaway, J. Näslund, S. Hahne, J. Thyberg, L. Terenius, C. Nordstedt, "Controlling amyloid beta-peptide fibril formation with protease-stable ligands" J Biol Chem 272 (19): 12601-5, 1997.
[7]     L. O. Tjernberg, et al. "Arrest of beta-amyloid fibril formation by a pentapeptide ligand" J Biol Chem 271 (15): 8545-8, 1996.
[8]     C. Soto, "Alzheimer’s and prion disease as disorders of protein conformation: implications for the design of novel therapeutic approaches" Journal of Molecular Medicine 77 (5): 412-418, 1999.
[9]     C. Soto, et al. "Inhibition of Alzheimer's amyloidosis by peptides that prevent beta-sheet conformation" Biochem Biophys Res Commun 226 (3): 672-80, 1996.
[10] C. Peters, M. S. Kindy, M. Baumann, B. Frangione, "Inhibition of amyloid beta-induced synaptotoxicity by a pentapeptide derived from the glycine zipper region of the neurotoxic peptide" Neurobiology of aging 34 (12): 2805-2814, 2013.
[11] خندان و هم­کاران، "بررسی مکانیسم مولکولی جلوگیری از تشکیل توده­های بتا-آمیلویید توسط پنتاپپتاید به روش شبیه‌سازی داکینگ و دینامیک مولکولی" مهندسی مکانیک مدرس، دوره 15، شماره 1: 39-48، 1393.
[12] H. Alonso, A. A. Bliznyuk, J. E. Gready, "Combining docking and molecular dynamic simulations in drug design" Medicinal Research Reviews 26 (5): 531-568, 2006.
[13] T. Lührs, C. Ritter, M. Adrian, D. Riek-Loher, B. Bohrmann, H. Döbeli, D. Schubert, R. Riek, "3D structure of Alzheimer's amyloid-β (1–42) fibrils" Proceedings of the National Academy of Sciences of the United States of America 102 (48): 17342-17347, 2005.
[14] S. Kalyaanamoorthy, Y. P. P. Chen, "Modelling and enhanced molecular dynamics to steer structure-based drug discovery" Progress in Biophysics and Molecular Biology, 2013.
[15] I. A. Vakser, C. Aflalo, "Hydrophobic docking: a proposed enhancement to molecular recognition techniques" Proteins 20 (4): 320-9, 1994.
[16] D. Kozakov, et al. "An FFT-based protein docking program with pairwise potentials" Proteins: Structure, Function, and Bioinformatics 65 (2): 392-406, 2006.
[17] D. Kozakov, D. Beglov, T. Bohnuud, S. E. Mottarella, B. Xia, D. R. Hall, S. Vajda, "How good is automated protein docking?" Protein: Structure, Function and Bioinformatics 81 (12): 2159-2166, 2013.
[18] S. R. Comeau, D. W. Gatchell, S. Vajda,  C. J. Camacho, "ClusPro: a fully automated algorithm for protein–protein docking" Nucleic Acids Research 32 (suppl 2): 96-99, 2004.
[19] J. C. Phillips, et al. "Scalable molecular dynamics with NAMD" Journal of Computational Chemistry 26 (16): 1781-1802, 2005.
[20] Computational Biochemistry and Biophysics. Bahman 21 CRC Press, 1379.
[21] J. L. Abascal, R. G. Fernández, C. Vega, "Carignano, The melting temperature of the six site potential model of water" 2006.
[22] B. W. Matthews, "Hydrophobic Interactions in Proteins, in eLS" John Wiley & Sons, Ltd, 2001.
[23] N. J. Bruce, D. Chen, S. G. Dastidar, G. E. Marks,  C. H. Schein, R. A. Bryce, "Molecular dynamics simulations of Aβ fibril interactions with β-sheet breaker peptides" Peptides 31 (11): 2100-2108, 2010.