Document Type : Full Research Paper

Authors

1 PhD Candidate, Department of Biomedical Engineering, School of Electrical and Computer Engineering, Tarbiat Modares University

2 Associate Professor, Department of Biomedical Engineering, School of Electrical and Computer Engineering, Tarbiat Modares University

10.22041/ijbme.2009.13406

Abstract

In recent years, adaptive beam forming methods have been successfully applied to medical ultrasound imaging, resulting in significant improvement in image quality compared to non-adaptive beam formers. This improvement results from the fact that their weights are chosen based on the priori knowledge of the received data and updated using current statistics of the array signal. Most of the adaptive beam formers presented in the ultrasound imaging literature are based on the minimum variance (MV) beam former, which can improve the imaging resolution while retaining the contrast. It is desirable that the beam former could improve the resolution and contrast, at the same time. To this end, in this paper, we have used temporal averaging besides the conventional spatial averaging to estimate the more accurate covariance matrix. Moreover, we have used the coherence factor weighting combined with MV beam forming to enhance the focusing quality and hence reducing the undesired side lobes. The efficacy of the proposed adaptive beam forming approach is demonstrated via a number of simulated and experimental examples.

Keywords

Main Subjects

[1]     Lo K. W., Adaptive array processing for wide-band active sonars; IEEE J. Oceanic Eng., 2004; 29(3):837- 846.
[2]     Stoica P., Wang Z., Li J., Robust Capon beamforming; IEEE Trans. Signal Process. Letters, 2003; 10(6):172- 175.
[3]     Gaudes C. C., Santamaría I., Vía J., Gómez E. M., Paules T. S., Robust array beamforming with sidelobe control using support vector machines; IEEE Trans. Signal Process., 2007; 55(2):574–584.
[4]     Ser W., Chen H., Yu Z. L., Self-calibration-based robust near-field adaptive beamforming for microphone arrays; IEEE Trans. Circuits and Systems- II: Express Briefs, 2007; 54(3):267-271.
[5]     Capon J., High resolution frequency-wavenumber spectrum analysis; Proc. IEEE, 1969; 57(8):1408- 1418.
[6]     Mann J. A., Walker W. F., A constrained adaptive beamformer for medical ultrasound: initial results; in Proc. IEEE Ultrason., Symp. 2002; 1807-1810.
[7]     Frost III O. L., An algorithm for linearly constrained adaptive array processing; Proc. IEEE, 1972; 60(8): 926-935.
[8]     Wang Z., Li J., Wu R., Time-delay- and time-reversalbased robust Capon beamformers for ultrasound imaging; IEEE Trans. Med. Imag., 2005; 24(10): 1308- 1322.
[9]     Sasso M., Cohen-Barcie C., Medical ultrasound imaging using the fully adaptive beamformer; in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2005; 489-492.
[10] Synnevag J. F., Austeng A., Holm S., Minimum variance adaptive beamforming applied to medical ultrasound imaging; in Proc. IEEE Ultrasonic Symposium, 2005; 1199-1202.
[11] Synnevag J. F., Austeng A., Holm S., Adaptive beamforming applied to medical ultrasound imaging; IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 2007; 54(8):1606-1613.
[12] Synnevag J. F., Austeng A., Holm S., Benefits of minimum variance beamforming in medical ultrasound imaging; IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 2009; 56(9):1868-1879.
[13] Christensen D. A., Ultrasonic bioinstrumentation; Wiley, New York, 1988.
[14] Shan T. –J., Wax M., Kailath T., On spatial smoothing for direction-of-arrival estimation of coherent signals; IEEE Trans. Acoust. Speech Signal Processing, 1985; 33(4):806–811.
[15] Hollman K. W., Rigby K. W., O’Donnell M., Coherence factor of speckle from a multi-row probe; in Proc. IEEE Ultrason. Symp., 1999; 1257-1260.
[16] Li P.C., Li M.L., Adaptive imaging using the generalized coherence factor; IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 2003; 50(2):128-141.
[17] Jensen J. A., Field: A program for simulating ultrasound systems; Med. Biol. Eng. Comput., 1996; 34: 351–353.
[18] O’Donnell M., Flax S. W., Phase-aberration correction using signals from point reflectors and diffuse scatterers: measurements; IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 1988; 35(6):768-774.
[19] محمدزاده اصل بابک، محلوجی‌فر علی؛ بررسی حساسیت شکل دهنده پرتو وفقی مینیمم واریانس به تغییرات سرعت صوت در تصویربرداری اولتراسوند؛ شانزدهمین کنفرانس مهندسی پزشکی ایران، دی 1388.