Document Type : Full Research Paper


1 Associate Professor, Department of Biomedical Engineering, School of Electrical and Computer Engineering,Tarbiat Modares University, Tehran, Iran

2 M.Sc Student, Department of Biomedical Engineering, School of Electrical and Computer Engineering, Tarbiat Modares University

3 PhD Candidate, Department of Biomedical Engineering, School of Electrical and Computer Engineering, Tarbiat Modares University

4 Associate Professor, Department of Physical Therapy, School of Medical Science, Tarbiat Modares University,



Collagen content and its configuration are considered to be among important criteria of healing in tissues. Therefore, developing a method to estimate these factors can benefit physicians in terms of valuable information. In this paper, we examine variation of collagens in tissue mimicking phantoms as well as in vivo tissue taking advantage of applying image processing techniques on ultrasound images of samples. In phantoms, as the base tissue we have used agar-water matrix material and graphite to simulate collagen, respectively. We also have used different concentrations of graphite to simulate different contents of collagen according to attenuation coefficient of ultrasound waves in soft tissue and its correlation with weight ratio of graphite. Experimental and simulation results show that increase in concentration of graphite in phantoms results in higher energy and more contrast level in B-Mode images (r=0.99, p


Main Subjects

[1]     Dyson M., Moodley S., Verjee L., Verling W., Weinman J., Wilson P., Wound healing assessment using 20MHz ultrasound and photography; Skin Research and Technology, 2003; 116-121.
[2]     Szymanska E., Nowiciki A., Mlosek K., Litniewski J., Lewandowski M., Secomski W., Tymkiewicz R., Skin imaging with high frequency ultrasound-preliminary results; European Journal of Ultrasound, 2000; 9-16.
[3]     Lori bridal S., Fournier C., Coron A., Leguerney I., Laugier P., Ultrasonic Backscatter and Attenuation (11-27MHz) Variation with Collagen Fiber Distribution in Ex Vivo Human Dermis; Ultrasonic Imaging, 2006; 28: 23-40.
[4]     Hall C.S., Nguyen C. T., Scott M. J., Lanza G. M., Wickline S. A., Delineation of the extracellular determinants of ultrasonic scattering from elastic arteries; Ultrasound in Med Biol., 2000; 26: 613-620.
[5]     Balasundar I. R., Kirsty J. S., Salvador G., Mandayam A. S., Quantitative Ultrasonic Methods for Characterization of Skin Lesions in Vivo; Ultrasound in Med Biol., 2003; 29(6): 825-838.
[6]     Balasundar I. R., Mandayam A. S., High-frequency ultrasonic attenuation and backscatter coefficients of in vivo normal human dermis and subcutaneous fat; Ultrasound in Med Biol., 2001; 27: 1543-1556.
[7]     Guittet C., Ossant F., Remenieras J., Pourcelot L., Berson M., High-Frequency Estimation of The Ultrasonic Attenuation Coefficient Slope Obtained in Human Skin: Simulation and in Vivo Results; Ultrasound in Med Biol., 1999; 25(3): 421-429.
[8]     Moran C. M., Bush N. L., Bamber J. C., Ultrasonic propagation properties of excised human skin; Ultrasound in Med Biol., 1996; 21(9): 1177-1190.
[9]     Valckx F. M. J, Thijssen J. M., Characterization of echographic image texture by cooccurrence matrix parameters; Ultrasound in Med Biol., 1997; 23(4): 559-571.
[10] Vogt M., Ermert H., Gammal S. E., Kasper K., Hoffman K., Altmeyer P., Structural analysis of skin using high frequency, broadband ultrasound in the range from 30 to 140 MHz; Proceedings of the IEEE International Ultrasonics Symposium, 1998; 1685- 1688.
[11] Altmeyer P., Gamall S. E., Hoffman K., Ultrasound in dermatology; 1st Ed., Berlin Heidelberg, Springer Verlag, 1992.
[12] Prabhakara S.; Acoustic Imaging of Bruises; Master's Thesis, Georgia Institute of Technology, 2006.
[13] محمدی احسان؛ کنترل کیفی سیستم‌های تصویربرداری اولتراسوند پزشکی به وسیله طراحی و ساخت فانتوم‌های مورد لزوم؛ پایان نامه کارشناسی ارشد، دانشگاه علوم پزشکی و خدمات بهداشتی و درمانی تهران، دانشکده پزشکی، 1379.
[14] Madsen E. L., Zagzebski J. A., Banjavic R. A., Burlew M. M., Phantom Material and Method; U. S. Patent, 1981; 4,277,367.
[15] Burlew M. M., Madsen E. L., Zagzebski J. A., Banjavic R. A., Sum S. W., A New Ultrasound Tissue- Equivalent Material; Radiology, 1980; 134: 517-520.
[16] Moghimi S., Miran Baygi M. H., Torkaman G., Mahloojifar A., Quantitative assessment of pressure sore generation and healing through numerical analysis of high frequency ultrasound images, J Rehab Res Dev, Article in press.
[17] مقیمی سحر، میران‌بیگی محمدحسین، ترکمان گیتی، محلوجی‌فر علی؛ بررسی  رفتار مکانیکی بافت در ایجاد زخم‌های فشاری با استفاده از شبیه‌سازی و آزمایش در مدل آزمایشگاهی خوکچه هندی؛ مجله فیزیک پزشکی ایران، پنجم (دوم): پیاپی (20، 21)، 85-92.
[18] Olerud J. E., O’Brien W. D., Riederer-Henderson M. A., Steiger D., Forster F. K., Daly C., Ketterer D. J., Odland G. F., Ultrasonic Assessment of Skin and Wounds With the Scanning Laser Acoustic Microscope; The Journal of Investigative Dermatology, 1987; 88 (5): 615-623.
[19] Theodoridis S., Koutroumbas K.; Pattern Recognition; 2nd Ed., Elsevier, ISBN: 0-12-685875-6; 2003: 272- 279.
[20] Huang J., Holt R. G., Cleveland R. O., Roy R. A., Experimental validation of a tractable numerical model for focused ultrasound heating in flow-through tissue phantoms; Acoustical society of America, 2004; 116(4): 2451-2458.
[21] Harland C. C., Bamber J. C., Gusterson B. A., Mortimer P. S., High frequency, high resolution Bscan ultrasound in the assessment of skin tumours; Br. J. Dermatol., 1993; 128: 525-532.
[22] Bessonart M. N., Macedo N., Carmona C., High resolution B-scan ultrasound of hypertrophic scars; Skin Research and Technology, 2005; 11: 185-188.