Document Type : Full Research Paper


1 Associate Professor, Biomechanics Department, Mechanical Engineering School, Iran University of Science and Technology

2 MSc. Graduated in Biomechanics, Biomechanics Department, Mechanical Engineering School, Iran University of Science and Technology



A 3D anatomically accurate finite element model of the human first cervical vertebra (atlas), including cortical and cancellous bones, was developed in ANSYS 9 based on CT-scan images. The main objective was to investigate the effect of cancellous bone on the value and distribution of maximum and average Von Mises stress in Atlas. The results showed that the material property of cancellous bone has no significant effect on the location of maximum stress and the pattern of average stress distribution in anterior arch, the junction of posterior arch and lateral mass and the groove of the posterior arch. Although the presence of cancellous bone in the model yielded higher values for the maximum and average stresses. The boundary condition had a considerable effect on this increase. Altering the material property of cancellous bone under neutral and hyperextension loading configurations, affected the average stress only in cancellous bone in the lateral mass, but change in the material property of cortical bone resulted in average stress change both in the cortical and cancellous bones, and in the lateral displacement of the lateral mass as well. The interconnected effects of changing the material properties of these two bone tissues were also studied. 


Main Subjects

[1]     Levine A.M., Edwards C.C., Fracture of the atlas, Journal of Bone and surgery, 1991; 75(5): 680-691.
[2]     فرزان‌نیا اکبر؛ ترومای ستون فقرات و نخاع گردنی فوقانی (اکسی‌پوت، C1 و C2)، کنگره سالانه انجمن جراحان مغز و اعصاب ایران، 1375.
[3]     Beckner M.A., Heggeness M.H., Doherty B.J., A biomechanical study of Jeferson fractures, Spine, 1998; 23 (17): 1832-1836.
[4]     Hays M.B., Alker G.J., Fracture of the atlas vertebra: The two-part burst fracture of jeferson, Spine, 1988; 13(6): 601-613.
[5]     Jeferson G., Fracture of the atlas vertebra: Reports of four cases and a review of those previously recorded, British Journal of Surgery 1920; 7: 407-422.
[6]     Levine A.M., Edwards C.C., Fractures of the Atlas, Journal of Bone and Joint Surgery, 1991; 73 (5): 680- 691.
[7]     Oda T., Panjabi M.M., Crisco J.J., Oxland, T.R., Katz, L., Nolte L.,. Experimental study of atlas injuries II: Relevance to clinical diagnosis and treatment, Spine, 1991;16 (10 Suppl): S466-S473. Panjabi M.M., Oda T., Crisco J.J., Oxland T.R., Katz L., Nolte L., Experimental study of atlas injuries I: Biomechanical analysis of their mechanicsms and fracture patterns, Spine, 1991; 16 (10 Suppl): S460- S465.
[8]     حق پناهی محمد، سهرابی صبا، گرگین‌زاده علی، مدلسازی هندسی دقیق سه‌بعدی مهره اول ستون فقرات گردنی (اطلس) و تحلیل المان محدود مدل، نشریه بین‌المللی علوم مهندسی دانشگاه علم و صنعت ایران، شماره 3، جلد 18، پاییز 1386، صفحات 81-87.
[9]     Teo E.C., Ng H.W., First cervical vertebra (atlas) fracture mechanism studies using finite element method, Journal of Biomechanics, 2001; 34: pp13-21.
[10] Panjabi M.M., White A.A., Clinical Biomechanics of Spine, J.B.Lippincott Co.,1990: 342,360.
[11] Kumaresan S., Yoganandan N., Pintar F.A., Finite element analysis of the cervical spine: a material property sensitivity analysis, Journal of Clinical Biomechanics, 1998; 14: 41-53,
[12] Ng H.W., Teo E.C., Lee V.S., Statistical factorial analysis on the material property sensitivity of the mechanical responses of the C4-C6 under compression, anterior and posterior shear, Journal of Biomechanics, 2004; 37: 771-777.