[1] S. R. McDougall et al., "Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies,"Bull. Math. Biol.,vol. 64, no. 4, pp. 673-702, July, 2002.
[2] H. A. Levine and B. D. Sleeman, "Modelling Tumour-Induced Angiogenesis"in Cancer Modelling and Simulation. 1sted, CRC Press, 2003, ch. 6, pp.147-183.
[3] F. Billy et al.,"A pharmacologically-based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy," J. Theor. Biol., vol. 260, no. 4, pp. 545-562, Oct, 2009.
[4] N.V. Mantzaris, S. Webb, H.G. Othmer, "Mathematical modeling of tumor-induced angiogenesis," J. Math. Biol., vol. 49, no. 2, pp. 111-187, Aug, 2004.
[5] R.K. Jain, "Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy," Science, vol. 307, no. 5706, pp. 58-62, Jan, 2005.
[6] J. Folkman, M. Klagsbrun, "Angiogenic factors,"Science, vol. 235, no. 4787, pp. 442-447, Jan, 1987.
[7] B. Addison-Smith, D.L.S. McElwain, P.K. Maini, "A simple mechanistic model of sprout spacing in tumour-associated angiogenesis,"J. Theor. Biol., vol. 250, no. 1, pp. 1-15, Jan, 2008.
[8] A.R.A. Anderson et al.,"A gradient-driven mathematical model of antiangiogenesis,"Math Comput Model., vol. 32, no. 10, pp. 1141-1152, Nov, 2000.
[9] G.J. Beattie, J.F. Smyth, "Phase I study of intraperitoneal metalloproteinase inhibitor BB94 in patients with malignant ascites,"Clin. Cancer Res.,vol. 4, no. 8, pp. 1899-1902, Aug, 1998.
[10] V.P. Terranova et al.,"Human endothelial cells are chemotactic to endothelial cell growth factor and heparin,"J Cell Biol., vol. 101, no. 6, pp. 2330-2334, Dec, 1985.
[11] C.L. Stokes et al.,"Chemotaxis of human microvessel endothelial cells in response to acidic fibroblast growth factor,"Lab Invest., vol. 63, no. 5, pp. 657-668, Nov, 1990.
[12] A.R.A. Anderson, M.A.J. Chaplain, "Continuous and discrete mathematical models of tumor-induced angiogenesis,"Bull. Math. Biol., vol. 60, no. 5, pp. 857-899, Sep., 1998.
[13] J. Panovska, H.M. Byrne, P.K. Maini, "Mathematical modelling of vascular tumour growth and implications for therapy," in Mathematical Modeling of Biological Systems, Volume I, Birkhäuser Boston, 2007, ch. 18, p. 205-216.
[14] Y. Cai, S.X. Xu, J. Wu, Q. Long, "Coupled modelling of tumour angiogenesis, tumour growth and blood perfusion,"J. Theor. Biol., vol. 279, no. 1, pp. 90-101, Jun, 2011.
[15] J. Folkman,"Tumor angiogenesis: therapeutic implications," N Engl J Med, vol. 285, no. 2,pp. 1182-1186, Nov., 1971.
[16] A.R.A. Anderson et al., "Mathematical modelling of tumour invasion and metastasis,"Comput Math Methods Med,vol. 2, no. 2, pp. 129-154, 2000.
[17] I. Ramis-Conde, M.A.J. Chaplain, A.R.A. Alexander, "Mathematical modelling of cancer cell invasion of tissue,"Math Comput Model, vol. 47, no. 5,pp. 533-545, March, 2008.
[18] H.B. Frieboes et al., "Three-dimensional multispecies nonlinear tumor growth-II: Tumor invasion and angiogenesis,"J. Theor. Biol., vol. 264, no. 4, pp. 1254-1278, Jun, 2010.
[19] H. Levine, B.D. Sleeman, M. Nilsen-hamilton, "Mathematical modeling of the onset of capillary formation initiating angiogenesis,"J Math Biol, vol. 4, no. 3,pp. 195-238, March, 2001.
[20] M.E. Orme, M.A.J. Chaplain, "A mathematical model of vascular tumour growth and invasion,"Math Comput Model,vol. 23, no. 10, pp. 43-60, May, 1996.
[21] S. Sun et al., "A deterministic model of growth factor-inducedangiogenesis,"Bull. Math. Biol., vol. 67, no. 2, pp. 313-337, March, 2005.
[22] V. Capasso, D. Morale, "Stochastic modelling of tumour-induced angiogenesis,"J Math Biol, vol. 58, no. 1-2 , pp. 219-233, Jan, 2009.
[23] R.D.M Travasso et al., "Tumor angiogenesis and vascular patterning: amathematical model," PLoS One, vol. 6, no. 5, p. e19989, May, 2011.
[24] P. Macklin et al., "Multiscale modelling and nonlinear simulation of vascular tumour growth," J Math Biol, vol. 58, no. 4-5, pp. 765-798, Apr., 2009.
[25] A. Stéphanou et al., "Mathematical modelling of the influence of blood rheological properties upon adaptativetumour-induced angiogenesis,"Math Comput Model, vol. 44, no. 1, pp. 96-123, Jul., 2006.
[26] J. Wu et al., "Coupled modeling of blood perfusion in intravascular, interstitial spaces in tumor microvasculature,"J Biomech, vol. 41, no. 5, pp. 996-1004, Dec., 2008.
[27] J.A. Sherratt, M.A.J Chaplain, "A new mathematical model for avascular tumour growth,"J Math Biol, vol. 43, no. 4, pp. 291-312, Oct., 2001.
[28] J.P. Ward, J.R. King, "Mathematical modelling of avascular-tumour growth II:Modelling growth saturation,"Math Med Biol, vol. 16, no. 2, pp. 171-211, Jun, 1999.
[29] H.M. Byrne, M.A.J. Chaplain, "Mathematical models for tumour angiogenesis:numerical simulations and nonlinear wave solutions,"Bull. Math. Biol., vol. 57, no. 3, pp. 461-486, May, 1995.
[30] M.E. Orme, M.A.J. Chaplain, "Two-dimensional models of tumour angiogenesis and anti-angiogenesis strategies,"Math Med Biol, vol. 14, no. 3, pp. 189-205, Sep., 1997.
[31] C.J.W. Breward, H.M.Byme, C. E. Lewis "A multiphase model describing vascular tumour growth,"Bull. Math. Biol., vol. 65, no. 4, pp. 609-640, Jul., 2003.
[32] C.J.W. Breward, H.M. Byrne, C.E. Lewis, "Modelling the interactions between tumour cells and a blood vessel in a microenvironment within a vascular tumour,"Eur J Appl Math, vol. 12, no. 5, pp. 529-556, Oct., 2001.
[33] P. Hahnfeldt et al.,"Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy,"Cancer Res,vol. 59, no. 19, pp. 4770–4775, Oct., 1999.
[34] E. Bavafaye-Haghighi et al., "Multiscale cancer modeling: In the line of fast simulation and chemotherapy," Math Comput Model, vol. 49, no. 7, pp.1449-1464, Apr, 2009.
[35] A. Stéphanou et al., "Mathematical modelling of flow in 2D and 3D vascular networks: Applications to anti-angiogenic and chemotherapeutic drug strategies,"Math Comput Model, vol. 41, no.10, pp. 1137-1156, May, 2005.
[36] S. R. McDougall, A.R.A. Anderson, M.A.J. Chaplain, "Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: Clinical implications and therapeutic targeting strategies,"J Therm Biol, vol. 241, no. 3,pp. 564-589, Aug, 2006.
[37] S. R. McDougall et al, "Modelling the impact of pericyte migration and coverage of vessels on the efficacy of vascular disrupting agents,"MathModel Nat Phenom, vol. 5, no. 1, pp. 163-202, 2010.
[38] A. R. A. Anderson et al., "Tumor morphology andphenotypic evolution driven by selective pressure from the microenvironment," Cell, vol. 127, no. 5, pp. 905-915, Dec, 2006.
[39] R.P. Araujo, D.L.S. McElwain, "A mixture theory for the genesis of residual stresses in growing tissues II: solutions to the biphasic equations fora multicell spheroid,"SIAM J APPL MATH, vol. 66, no. 2, pp. 447-467, 2005.
[40] P. Gerlee,A.R.A. Anderson, "Evolution of cell motility in an individual-based model of tumour growth,"J Therm Biol, vol. 259, no.1,pp. 67-83, Jul, 2009.
[41] F. Hosseini, N. Naghavi, "Two dimensional mathematical model of tumor angiogenesis: coupling of avascular growth and vascularization," Iranian Journal of Medical Physics, vol. 12, no. 3, pp.145-166, Sep, 2015.
[42] F. Hosseini, N. Naghavi, "Modeling of tumor induced angiogenesis: combination of stochastic sprout spacing and sprout progression," Journal of Biomedical Physics and Engineering, Accepted.
[43] N. Naghavi et al., "Simulation of tumor induced angiogenesis using an analytical adaptive modeling including dynamic sprouting and blood flow modeling," Microvasc. Res., 107, pp. 51-64, Sep, 2016.